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ABSTRACT

The aim of this study is to develop a hybrid method using scale 3 Haar wavelets for 
obtaining the solution of coupled space-time fractional Burgers’ equation. Scale 3 Haar 
wavelets were used to estimate the solution by series approximation. Caputo and Riemann-
Liouville definitions were used to handle the fractional derivatives and integrals in the 
problem. A quasi-linearization technique was implemented to handle the nonlinearity in 
the problems. Two examples of coupled space-time fractional Burgers’ equations were 
studied to analyze the performance of the proposed technique. 
Keywords: Caputo derivatives, fractional coupled Burgers’ Equation, Quasi-linearization, Riemann-Liouville 

integration, scale 3 Haar wavelets 

INTRODUCTION

Fractional calculus emerges as a great tool in explaining the physical and chemical 
phenomenon with alienate kinetics having microscopic complex behavior. There are 
fractional differential models which have a non-differentiable but continuous solution such 
as Weierstrass type functions (Zahle & Ziezold, 1996). These kinds of characteristics are 
not possible to explain with the help of ordinary or partial differential models. Earlier the 
field of fractional calculus was purely mathematical without any visible application but 

in these days, fractional calculus has gained 
a huge importance in the field of science 
and technology because of its application 
in the various field like theory of thermo-
elasticity (Povstenko, 2009), viscoelastic 
fluids (Tripathi et al., 2010), dynamics of 
earthquakes (Lopes et al., 2013) and fluid 
dynamics (Momani & Odibat, 2006a). It 
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has also been observed experimentally and from the real-time observation that there are 
many complex systems in the real world like relaxation in viscoelastic material, pollution 
diffusion in the surrounding, charge transport in amorphous semiconductors and many 
more which show anomalous dynamics. This capability of fractional differential equations 
of explaining the abnormal dynamic of the system with more efficiency and accuracy has 
gained huge attention from the scientific community. Many of the important classical 
differential equations with integer-order has got extensions to the generalized fraction 
differential equation with an arbitrary order for in-depth study of the corresponding 
physical model. But general analytic solution for many fractional differential equations 
which are non-homogeneous in nature are very difficult and cumbersome to achieve. 
Moreover, finding the solution of such equations becomes more challenging when there 
are nonlinearities in the equations.

Therefore, many researchers are involved in developing the various numerical and 
semi-analytic schemes for finding solutions to the different problems governed by these 
differential equations. Some of the fractional differential equations which had been recently 
studied because of their capability of explaining the real time phenomena’s were fractional 
Black-Scholes equation (Duan et al., 2017), time-fractional Klein–Gordon equations 
(Hosseini et al., 2018; Inc et al., 2018), time-fractional Fisher’s equation (Atangana, 2016; 
Zhang et al., 2014), fractional Bagley Torvik equation (Ray, 2012), time-fractional Burgers’ 
equation (Inc, 2008; Khan et al., 2012), Fitzhugh–Nagumo fractional differential equation 
(Kumar et al., 2018), fractional Ginzburg-Landau equation (Mohebbi, 2018; Shen et al., 
2018), fractional Korteweg-de Vries–Burgers’ equation ( Odibat & Momani, 2009; Wang, 
2006), nonlinear fractional order oscillatory Van der Pol system (Ray & Patra, 2013), 
fractional Poisson equation (Heydari et al., 2013), fractional Riccati differential equations 
(Momani & Shawagfeh, 2006), fractional Schrodinger equation (Bezerra et al., 2018), 
fractional Sine-Gordon equations (Karayer et al., 2018), fractional Bioheat equations (Singh 
et al., 2011), time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation (Baleanu et 
al., 2018), Sharma–Tasso–Olver equation (Roy et al., 2018), Fokker–Planck fractional 
equation (Mahdy & Marai, 2018; Zhang et al., 2018), fractional Telegraph equation 
(Momani, 2005; Tawfik et al., 2018), time-fractional generalized Boussinesq equation 
(Lu et al., 2018), Navier–Stokes time-fractional differential equation (Momani & Odibat, 
2006b), time-fractional wave equation (Odibat & Momani, 2006) and two-dimensional 
fractional Helmholtz equations (Abuasad et al., 2019). 

Fractional coupled Burgers’ equation is also a very important equation in the field of 
fluid mechanics to study the motion of fluids concentrations under the effect of gravity. 
It is a mathematical model of time-dependent sedimentation or creaming of different 
concentrations of two kinds of particles in fluid colloids or suspensions, under the effect 
of gravity (Esipov, 1995). Burgers’ equations are the special case of Navier Stokes’ 



Wavelet-based Technique for Fractional - Burgers’ Equation

581Pertanika J. Sci. & Technol. 28 (2): 579 - 607 (2020)

equations and are very much important in the field of science and technology. Researchers 
are in continuous progress to study the different characteristics of the phenomenon  
governed by the fractional models by developing the different algorithms to solve time-
fractional coupled Burgers’ equation such as Fractional Variational iteration method 
(FVIM) (Prakash et al., 2015), Differential Transformation Method (DTM) (Liu & Hou, 
2011), Homotopy Perturbation Method (HPM) (Yildirim & Kelleci, 2010), Coupled 
Fractional Reduced Differential Transform Method(CFRDTM) (Ray, 2013) and Adomian 
Decomposition Method (ADM) (Chen & An, 2008). But the study of characteristics of 
different concentrations of two kinds of particles governed by fractional coupled Burgers’  
equation has not been investigated yet by any of the scale 3 Haar wavelet-based technique 
simultaneously with space and time fraction.  

Wavelets are one of the modernistic orthonormal functions which have the capability 
of dilation and translation. Because of these properties, numerical techniques that involve 
wavelet bases are showing the qualitative improvement in contrast with other methods. In 
literature, dyadic wavelets are in preponderance. In 1995, Chui and Lian had developed 
the scale 3 Haar wavelets by using the process of multiresolution analysis. In 2018, Mittal 
and Pandit (2018a, 2018b & 2019) had used the scale 3 Haar wavelets for solving the 
various types of differential equations and found that these wavelet bases were equally 
competent in solving the various types of mathematical models governed by differential 
equations. Also, it was shown by them that the scale 3 Haar wavelet had a faster rate of 
convergence as compared to the dyadic wavelets. Moreover, investigation of characteristics 
of the solution to the fractional coupled Burgers’ equation has not been done yet by the 
Scale 3 Haar wavelet methods as far as our knowledge is concerned.  This encourages 
us to develop a new technique using scale 3 Haar wavelet for analyzing the behavior of 
systems governed by the fractional coupled Burgers’ equation. 

The prime objective of the proposed work is to provide a new numerical technique 
for obtaining the solution of space-time fractional-coupled Burgers’ equation (Equation 1) 
emerging in the field of fluid dynamics using scale 3 Haar wavelet bases

 
∂𝛼𝑢
∂𝑡𝛼 =

∂2𝑢
∂𝑥2 − 𝜂 𝑢

∂𝛽 𝑢
∂𝑥𝛽 − 𝜇

∂ 𝑢𝑣
∂𝑥     , 𝑥 𝜖  a , b      , 𝑡 𝜖 [0, 𝑇�

 
∂𝛾 𝑣
∂𝑡𝛾 =

∂2𝑣
∂𝑥2 − 𝜉 𝑣

∂𝛿 𝑣
∂𝑥𝛿 − 𝜆

∂ 𝑢𝑣
∂𝑥     , 𝑥 𝜖 a , b     , 𝑡 𝜖 [0, 𝑇�

  (1)

subjected to the boundary constraints (Equation 2)

𝑢 𝑎, 𝑡 = 𝑓1 𝑡   , 𝑢 𝑏, 𝑡 = 𝑓2 𝑡   , 𝑣 𝑎, 𝑡 = 𝜑1 𝑡    , 𝑣 𝑏, 𝑡 = 𝜑2 𝑡     ∀𝑡 𝜖  [0, 𝑇]

          (2)
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and with the constraints at the initial value (Equation 3)

𝑢 𝑥 , 0 = ℎ 𝑥       , 𝑣 𝑥, 0 = 𝑝 𝑥               ∀   𝑥 ϵ a , b   (3)

where α, β, γ, δ represents the order of fractional derivatives such that 0 < α, β, γ, δ ≤ 1. 
Different variations can be observed in the solution space by giving different values to 
these four parameters α, β, γ, δ. However, on taking α = β = γ = δ =1 the fractional-coupled 
Burgers’ equation will respond like a classical coupled Burgers’ equation with integer 
order. η, ξ, μ, λ are arbitrary constants depending upon the system parameter like Peclet 
number and Reynold number.

The manuscript follows the sequence of sections as described: In section 2, explicit 
forms of scale 3 Haar wavelets with their families and procedure to find their integrals 
have been explained briefly. Representation of the solution using scale 3 Haar wavelets 
is explained in section 3. Section 4 explains the method of solution using scale 3 Haar 
wavelets. In section 5, the convergence of the method is discussed. In section 6, solutions 
of two different coupled Burgers’ fractional equations are produced using the present 
method to analyze the efficiency and performance of the present method. In section 7, the 
conclusion drawn from the results and future research ideas are given.

Scale 3 Haar Wavelets and its Integrals

The mathematical expressions for  father wavelet (Scale 3 Haar  function) and mother 
wavelets for scale 3 Haar wavelet family with dilation factor  three  (Chui & Lian, 1995; 
Mittal & Pandit, 2018a) are given in Equation 4, 5 and 6

Haar scaling function Haar scaling function  ℎ1(𝑡)   =    �1         0 ≤ 𝑡 < 1
0      𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

    (4)

 ℎ𝑖 𝑡 = 𝜓1 3𝑗𝑡 − 𝑘 = 1
2

  

−1         𝛼1 𝑖 ≤ 𝑡 < 𝛼2 𝑖
   2         𝛼2 𝑖 ≤ 𝑡 < 𝛼3 𝑖
−1         𝛼3 𝑖 ≤ 𝑡 < 𝛼4 𝑖

0                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 𝑓𝑜𝑟  𝑖 = 2,4, … 3𝑝 − 1

          (5)

 ℎ𝑖 𝑡 = 𝜓 2 3𝑗𝑡 − 𝑘 =
3
2

   1           𝛼1(𝑖) ≤ 𝑡 < 𝛼2(𝑖)
    0           𝛼2(𝑖) ≤ 𝑡 < 𝛼3(𝑖)
 −1           𝛼3 𝑖 ≤ 𝑡 < 𝛼4 𝑖
 0                    𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

, 𝑓𝑜𝑟      𝑖 = 3,6, … 3𝑝

          (6)

where 𝛼1 𝑖 = 𝑘
𝑝

, 𝛼2 𝑖 =  3𝑘+1
3𝑝

, 𝛼3 𝑖 = 3𝑘+2
3𝑝

,𝛼4 𝑖 = 𝑘+1
𝑝

, 𝑝 = 3𝑗 ,𝑗 = 0,1,2, … ,  
𝑘 = 0,1,2, … , 𝑝 − 1.
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Here i, j, k respectively represent the wavelet number, level of resolution (dilation) and 
translation parameters of wavelet family. The values of i (for i > 1) can be calculated with 
the help of j, k by using the following relations i – 1 = 3j+ 2k for even values of i and i – 2 
= 3j+ 2k for odd values of i. By using this relation for different dilation and translations 
of h2(t), h3(t) we will get the wavelet family as h1(t), h2(t), h3(t), h4(t), h5(t), h6(t)... where 
h2(t) and h3(t) are also called mother wavelets and rest all the wavelets which we have 
obtained from mother wavelets are called daughter wavelets.

The main difference which makes the scale 3 Haar wavelets better than the dyadic 
wavelets is that only one mother wavelet is responsible for the construction of whole 
wavelet family but in case of scale 3 Haar wavelets, two mother wavelets with different 
shapes are responsible for the construction of the whole family. Because of this fact, scale 
3 Haar wavelets increase the convergence rate of the solution. The construction of scale 
3 Haar wavelet family is done by using the properties of Multi-resolution analysis which 
are described below

Now one can easily integrate the equations (Equation 4, 5 and 6) with the desired 
number of times over the interval [A, B) by using Riemann Liouville Integral formula 
(Das, 2011) as given in Equation 7

𝑞𝛽,𝑖(𝑡) =
1

Γ(𝛽) �  ℎ𝑖 𝑥 (𝑡 − 𝑥)𝛽−1𝑑𝑥
𝑡

𝐴

∀ 0 ≤ 𝛽 ≤ 𝑚 ,      𝑚 = 1,2,3 … …   ,        𝑖 = 1,2,3, … … 3𝑝   (7)

After evaluating the above integrals for Equation 4, we get Equation 8

𝑞𝛽,𝑖 𝑡 = 𝑡𝛽

Γ(𝛽+1)
𝑓𝑜𝑟 𝑖 = 1for i = 1       (8)

Using  Equation 7 on Equation 5, we get the values of qβ,i(t)’s f o r  i  = 
2 , 4 , 6 , 8 . . . , 3 p – 1  are given by Equation 9  

          (9)

Using Equation 7 on Equation 6, we get the values of qβ,i(t)’s f o r  i  = 
3 , 5 , 7 , 9 . . . , 3 p which are given by Equation 10
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          (10)

Approximation of Solution 

Using the properties of scale 3 Haar wavelets, any function 𝑥(𝑡) ∈ 𝐿2 𝑅  can be expressed 
as given in Equation 11

𝑢 𝑡 = ∑ 𝑎𝑖ℎ𝑖(𝑡)∞
𝑖=0 = 𝑎1ℎ1 𝑡 + ∑ 𝑎𝑖𝜓1 3𝑗𝑡 − 𝑘 + ∑ 𝑎𝑖𝜓2 3𝑗𝑡 − 𝑘𝑜𝑑𝑑 𝑖𝑒𝑣𝑒𝑛 𝑖

          (11)

Here ai‘s are the wavelet coefficients whose values are to be determined by the proposed 
method. But for computational purpose, one can consider a finite number of terms. By 
considering the first 3p terms to approximate the function u(t) we get Equation 12

𝑢 𝑡 ≈ 𝑢3𝑝 = � 𝑎𝑖ℎ𝑖(𝑡)
3𝑝

𝑖=0
     (12)

where p = 3j, j = 0 , 1 , 2 . . .

METHOD OF SOLUTION 

By applying the quasi-linearization technique to linearize the non-linear terms of Equation 
1, 2 and 3, we get the equivalent expression given by Equaion 13, 14, 15 and 16

𝑢𝑣𝑥 𝑟+1 = 𝑢𝑟+1 𝑣𝑥 𝑟 + 𝑢𝑟 𝑣𝑥 𝑟+1 − 𝑢𝑟 𝑣𝑥 𝑟

𝑣𝑢𝑥 𝑟+1 = 𝑣𝑟+1 𝑢𝑥 𝑟 + 𝑣𝑟 𝑢𝑥 𝑟+1 − 𝑣𝑟 𝑢𝑥 𝑟

𝑢𝑢𝛽 𝑟+1 = 𝑢𝑟+1 𝑢𝛽 𝑟 + 𝑢𝑟 𝑢𝛽 𝑟+1 − 𝑢𝑟 𝑢𝛽 𝑟

𝑣𝑣𝛿 𝑟+1 = 𝑣𝑟+1 𝑣𝛿 𝑟  +  𝑣𝑟 𝑣𝛿 𝑟+1  − 𝑣𝑟 𝑣𝛿 𝑟

    (13)

          (14)

          (15)

          (16)

Using Equation 13, 14, 15 and 16, non-linear coupled fractional differential Equation 
1, 2 and 3 transformed into a sequence of linear differential Equations 17 and 18
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∂𝛼𝑢
∂𝑡𝛼

𝑟+1
= 𝑢𝑥𝑥 𝑟+1 − 𝜂 𝑢𝑟+1 𝑢𝛽 𝑟 + 𝑢𝑟 𝑢𝛽 𝑟+1 − 𝑢𝑟 𝑢𝛽 𝑟

−𝜇 𝑢𝑟+1 𝑣𝑥 𝑟 + 𝑢𝑟 𝑣𝑥 𝑟+1 − 𝑢𝑟 𝑣𝑥 𝑟 + 𝑣𝑟+1 𝑢𝑥 𝑟 + 𝑣𝑟 𝑢𝑥 𝑟+1 − 𝑣𝑟 𝑢𝑥 𝑟

          (17)
∂𝛾 𝑣
∂𝑡𝛾

𝑟+1
= 𝑢𝑥𝑥 𝑟+1 − 𝜉 𝑣𝑟+1 𝑣𝛿 𝑟  + 𝑣𝑟 𝑣𝛿 𝑟+1  − 𝑣𝑟 𝑣𝛿 𝑟

−𝜆 𝑢𝑟+1 𝑣𝑥 𝑟 + 𝑢𝑟 𝑣𝑥 𝑟+1 − 𝑢𝑟 𝑣𝑥 𝑟 + 𝑣𝑟+1 𝑢𝑥 𝑟 + 𝑣𝑟 𝑢𝑥 𝑟+1 − 𝑣𝑟 𝑢𝑥 𝑟

 

          (18)

subjected to the boundary constraints given by Equation 19

𝑢 𝑎, 𝑡𝑟+1 = 𝑓1 𝑡𝑟+1      , 𝑢 𝑏, 𝑡𝑟+1 = 𝑓2 𝑡𝑟+1   , 𝑣 𝑎, 𝑡𝑟+1 = 𝜑1 𝑡𝑟+1  

𝑣 𝑏, 𝑡𝑟+1 = 𝜑2 𝑡𝑟+1

 (19)

and with the constraints on initial values given by Equation 20

𝑢 𝑥, 0 = ℎ 𝑥 , 𝑣 𝑥, 0 = 𝑝 𝑥 , ∀  x ϵ a , b   , 𝑡𝑟+1 𝜖 [0, 𝑇] and 𝑟 = 0,1,2 ⋯ 𝑚 − 1 (20)

here t r + 1  represents (r + 1 )th approximation for t in the process of quasilinearization.

𝑢𝑥𝑥(𝑥,̇ 𝑡) = �𝑎𝑖ℎ𝑖(𝑥)
3𝑚

𝑖=1
       (21)

𝑣𝑥𝑥 (𝑥,̇ 𝑡) = �𝑏𝑖ℎ𝑖(𝑥)
3𝑚

𝑖=1

       (22)

Integrating the Equation 21 and 22 with respect to t from t r  to t r + 1  to we get

𝑢𝑥𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  �𝑎𝑖ℎ𝑖(𝑥)
3𝑚

𝑖=1

+ 𝑢𝑥𝑥 𝑥, 𝑡𝑟    (23)

𝑣𝑥𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  �𝑏𝑖ℎ𝑖(𝑥)
3𝑚

𝑖=1

+ 𝑣𝑥𝑥 𝑥, 𝑡𝑟    (24)

Now integrating Equation 23 and 24 with respect to x within the limits 0 to x we get

𝑢𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  �𝑎𝑖𝑞𝑖,1(𝑥�
3𝑚

𝑖=1

+ 𝑢𝑥 𝑥,𝑡𝑟 + 𝑢𝑥 0, 𝑡𝑟+1 − 𝑢𝑥 0,𝑡𝑟  (25)
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𝑣𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  �𝑏𝑖𝑞𝑖,1(𝑥�
3𝑚

𝑖=1

+  𝑣𝑥 𝑥, 𝑡𝑟 + 𝑣𝑥 0, 𝑡𝑟+1 − 𝑣𝑥 0, 𝑡𝑟  (26)

Again, integrating the Equation 25 and 26 with respect to x within the limits 0 to x 
we get

𝑢 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  �𝑎𝑖𝑞𝑖,2(𝑥�
3𝑚

𝑖=1

+  𝑢 𝑥, 𝑡𝑟 − 𝑢 0, 𝑡𝑟

+𝑥 𝑢𝑥 0, 𝑡𝑟+1 − 𝑢𝑥 0,𝑡𝑟 + 𝑢 0, 𝑡𝑟+1   (27)

𝑣 𝑥 , 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  �𝑏𝑖𝑞𝑖,2(𝑥�
3𝑚

𝑖=1

+  𝑣 𝑥, 𝑡𝑟 − 𝑣 0, 𝑡𝑟

                         +𝑥 𝑣𝑥 0, 𝑡𝑟+1 − 𝑣𝑥 0, 𝑡𝑟 + 𝑣 0, 𝑡𝑟+1   (28)

on  subs t i tu t e  the  va lues  o f  unknown quan t i t i e s  𝑢𝑥 0, 𝑡𝑟+1 − 𝑢𝑥 0, 𝑡𝑟 ,  
𝑣𝑥 0, 𝑡𝑟+1 − 𝑣𝑥 0, 𝑡𝑟  by evaluating it from the above equations using x = 1 in the 
Equation 27 and 28, we get

𝑢 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  � 𝑎𝑖(𝑞𝑖,2 𝑥 − 𝑥
3𝑚

𝑖=1

𝑞𝑖,2(1)) +  𝑢 𝑥, 𝑡𝑟 − 𝑢 0, 𝑡𝑟

                         +𝑥 𝑢 1, 𝑡𝑟+1 − 𝑢 0, 𝑡𝑟+1 − 𝑥 𝑢 1, 𝑡𝑟 − 𝑢 0, 𝑡𝑟 + 𝑢 0, 𝑡𝑟+1  (29)

𝑣 𝑥 , 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  � 𝑏𝑖(𝑞𝑖,2 𝑥 − 𝑥
3𝑚

𝑖=1

𝑞𝑖,2(1)) +  𝑣 𝑥 , 𝑡𝑟 − 𝑣 0, 𝑡𝑟

                          +𝑥 𝑣 1, 𝑡𝑟+1 − 𝑣 0, 𝑡𝑟+1 − 𝑥 𝑣 1, 𝑡𝑟 − 𝑣 0, 𝑡𝑟 + 𝑣 0, 𝑡𝑟+1  (30)

𝑢𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  � 𝑎𝑖(𝑞𝑖,1 𝑥 − 𝑞𝑖,2(1)�
3𝑚

𝑖=1

+ 𝑢𝑥 𝑥, 𝑡𝑟  

                           + 𝑢 1, 𝑡𝑟+1 − 𝑢 0, 𝑡𝑟+1 − 𝑢 1, 𝑡𝑟 − 𝑢 0, 𝑡𝑟   (31)

𝑣𝑥 𝑥, 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  �𝑏𝑖(𝑞𝑖,1 𝑥 −
3𝑚

𝑖=1

𝑞𝑖,2(1)) +  𝑣𝑥 𝑥, 𝑡𝑟

+ 𝑣 1, 𝑡𝑟+1 − 𝑣 0, 𝑡𝑟+1 − 𝑣 1, 𝑡𝑟 − 𝑣 0, 𝑡𝑟  (32)

∂𝛼𝑢
∂𝑡𝛼 𝑥 , 𝑡𝑟+1 =

     𝑡𝑟+1 −  𝑡𝑟  1−𝛼

Γ 2 − 𝛼   � 𝑎𝑖(𝑞𝑖,2 𝑥 − 𝑥
 3𝑚

𝑖=1

𝑞𝑖,2(1))

                               +𝑥 
∂𝛼

∂𝑡𝛼 𝑢 1, 𝑡𝑟+1 − 𝑢 0, 𝑡𝑟+1 +
∂𝛼𝑢
∂𝑡𝛼 0, 𝑡𝑟+1  (33)
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∂𝛽 𝑢
∂𝑥𝛽 𝑥 , 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  � 𝑎𝑖(𝑞𝑖,2−𝛽 𝑥 −

𝑥𝛽

Γ 2 − 𝛽

3𝑚

𝑖=1

𝑞𝑖,2(1))  +
∂𝛽 𝑢
∂𝑥𝛽 𝑥, 𝑡𝑟  

+ 𝑥𝛽

Γ 2−𝛽
𝑢 1, 𝑡𝑟+1 − 𝑢 0, 𝑡𝑟+1 − 𝑢 1, 𝑡𝑟 − 𝑢 0, 𝑡𝑟  (34)

∂𝛾 𝑣
∂𝑡𝛾 𝑥, 𝑡𝑟+1 =

     𝑡𝑟+1 − 𝑡𝑟  1−𝛾

Γ 2 − 𝛾   � 𝑏𝑖(𝑞𝑖,2 𝑥 − 𝑥
 3𝑚

𝑖=1

𝑞𝑖,2(1))

                               +𝑥 
∂𝛼

∂𝑡𝛼 𝑣 1, 𝑡𝑟+1 − 𝑣 0, 𝑡𝑟+1 +
∂𝛼𝑣
∂𝑡𝛼 0, 𝑡𝑟+1   (35)

∂𝛿 𝑣
∂𝑥𝛿 𝑥 , 𝑡𝑟+1 = 𝑡𝑟+1 −  𝑡𝑟  � 𝑎𝑖(𝑞𝑖,2−𝛿 𝑥 −

𝑥𝛿

Γ 2 − 𝛿

3𝑚

𝑖=1

𝑞𝑖,2(1)) +
∂𝛿 𝑣
∂𝑥𝛿 𝑥, 𝑡𝑟  

                                +  
𝑥𝛿

Γ 2 − 𝛿 𝑣 1, 𝑡𝑟+1 − 𝑣 0, 𝑡𝑟+1 − 𝑣 1, 𝑡𝑟 − 𝑣 0, 𝑡𝑟  (36)

Now using the boundary constraints and discretizing the space variable as 𝑥 → 𝑥𝑙  

where 𝑥𝑙 = 2𝑙−1
6𝑝

, 𝑙 = 0,1,2, … … 2𝑝 in the Equation 29, 30, 31, 32, 33, 34, 35 and 36 and 

substituting  the values obtained in Equation 17 and 18 the following system of equations 
(Equation 37) are obtained  for different values of r

 𝑎1×3𝑝𝐴3𝑝×3𝑝 + 𝑏1×3𝑝𝐵3𝑝×3𝑝 = 𝐶1×3𝑝  
  𝑏1×3𝑝 𝐷3𝑝×3𝑝 + 𝑎1×3𝑝𝐸3𝑝×3𝑝 = 𝐹1×3𝑝      �     (37)

Where the Equation 38,39,40,41,42 and 43 respectivelyb represents the values of A, 
B, C, D, E and F as

 (38)

𝐵 =  𝜇 𝑡𝑟+1 −  𝑡𝑟  𝑢𝑥 𝑟 𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙 𝑞𝑖,2 1 + 𝑢𝑟 𝑞𝑖,1 𝑥𝑙 − 𝑞𝑖,2 1
 (39)
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𝐶 = 𝑢𝑥𝑥 𝑥𝑙, 𝑡𝑟

− 𝜂 � 𝑢𝛽 𝑟  𝑢 𝑥𝑙 , 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1

+ 𝑢𝑟  
∂𝛽 𝑢
∂𝑥𝛽 𝑥𝑙 ,𝑡𝑟  +  

𝑥𝑙
𝛽

Γ 2 − 𝛽 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 − 𝑢𝑟 𝑢𝛽 𝑟�

− 𝜇 �� 𝑣𝑥 𝑟  𝑢 𝑥𝑙 , 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1 �

+  𝑢𝑟  𝑣𝑥 𝑥𝑙 , 𝑡𝑟 + 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟  − 𝑢𝑟 𝑣𝑥 𝑟�

+ 𝑢𝑥 𝑟  𝑣 𝑥𝑙 , 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝑥𝑙 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1

+ 𝑣𝑟  𝑢𝑥 𝑥𝑙 ,𝑡𝑟 + 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 − 𝑣𝑟 𝑢𝑥 𝑟   �

− 𝑥𝑙  
∂𝛼

∂𝑡𝛼 𝑓2 𝑡 − 𝑓1 𝑡
𝑡=𝑡𝑟+1

−
∂𝛼𝑓1 𝑡

∂𝑡𝛼
𝑡=𝑡𝑟+1          (40)

𝐷 =
�     𝑡𝑟+1 −  𝑡𝑟  1−𝛾

𝛤 2 − 𝛾 𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙 𝑞𝑖,2 1

− 𝑡𝑟+1 −  𝑡𝑟  �ℎ𝑖 𝑥𝑙 − 𝜉 𝑣𝛿 𝑟 𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙 𝑞𝑖,2 1 + 𝑣𝑟  𝑞𝑖,2−𝛿 𝑥𝑙 −
𝑥𝑙

𝛿

𝛤 2 − 𝛿 𝑞𝑖,2 1

− 𝜆 𝑢𝑥 𝑟 𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙 𝑞𝑖,2 1 + 𝑢𝑟 𝑞𝑖,1 𝑥𝑙 − 𝑞𝑖,2 1 ��

          (41)

𝐸 =  𝜆 𝑡𝑟+1 −  𝑡𝑟  𝑣𝑥 𝑟 𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙 𝑞𝑖,2 1 + 𝑣𝑟 𝑞𝑖,1 𝑥𝑙 − 𝑞𝑖,2 1  (42)

𝐹 = 𝑣𝑥𝑥 𝑥𝑙, 𝑡𝑟

− 𝜉 � 𝑣𝛿 𝑟  𝑣 𝑥𝑙, 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝑥𝑙 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1

+  𝑣𝑟  
∂𝛿𝑣
∂𝑥𝛿 𝑥𝑙, 𝑡𝑟  + 

𝑥𝑙
𝛿

𝛤 2− 𝛿 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟  − 𝑣𝑟 𝑣𝛿 𝑟�  

− 𝜆 �� 𝑣𝑥 𝑟  𝑢 𝑥𝑙,𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1 �

+ 𝑢𝑟  𝑣𝑥 𝑥𝑙, 𝑡𝑟 + 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟  − 𝑢𝑟 𝑣𝑥 𝑟�

+ 𝑢𝑥 𝑟  𝑣 𝑥𝑙,𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝑥𝑙 𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1

+ 𝑣𝑟  𝑢𝑥 𝑥𝑙, 𝑡𝑟 + 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 − 𝑣𝑟 𝑢𝑥 𝑟  �

− 𝑥𝑙  
∂𝛼

∂𝑡𝛼 𝜑2 𝑡 − 𝜑1 𝑡  
𝑡=𝑡𝑟+1

−
∂𝛼𝜑1 𝑡

∂𝑡𝛼
𝑡=𝑡𝑟+1          (43)

The process of the solution starts by taking r = 0, t0 = 0 and the boundary conditions 
given in Equation 44 as
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𝑢 𝑥𝑙 , 𝑡𝑟 = 𝑢 𝑥𝑙 ,0 = ℎ 𝑥𝑙 , 𝑢𝑥 𝑥𝑙 ,𝑡𝑟 = 𝑢𝑥 𝑥𝑙 , 0 = ℎ𝑥 𝑥𝑙 , 

𝑢𝑥𝑥 𝑥𝑙, 𝑡𝑟 = 𝑢𝑥𝑥 𝑥𝑙 ,0 = ℎ𝑥𝑥 𝑥𝑙

 𝑣 𝑥𝑙 ,𝑡𝑟 = 𝑣 𝑥𝑙 ,0 = 𝑝 𝑥𝑙 ,𝑣𝑥 𝑥𝑙 , 𝑡𝑟 = 𝑣𝑥 𝑥𝑙 , 0 = 𝑝𝑥 𝑥𝑙 , 

𝑣𝑥𝑥 𝑥𝑙 , 𝑡𝑟 = 𝑣𝑥𝑥 𝑥𝑙, 0 = 𝑝𝑥𝑥 (𝑥𝑙)   (44)

The values of wavelet coefficients can be calculated successively for different values 
of r = 0 , 1 , 2 . . .  by using the Equation 45 and 46

𝑎1×3𝑝 = 𝐶 − 𝐹𝐷−1𝐵 ∗ (𝐴 − 𝐸𝐷−1𝐵)     (45)

𝑏1×3𝑝 = 𝐶 − 𝐹𝐸−1𝐴 ∗ (𝐵 − 𝐷𝐸−1𝐴)     (46)

Then by putting the values of the wavelet coefficient ai‘s and bi‘s  in the Equation 
49 and 50 one can obtain numerically approximated solution successively for u (x, t)  and 
v(x, t)  for r = 0,1,2,  3… using Equation 47 and 48

𝑢 𝑥𝑙 , 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  � 𝑎𝑖(𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙

3𝑚

𝑖=1

𝑞𝑖,2(1)) + 𝑢 𝑥𝑙 ,𝑡𝑟 − 𝑓1 𝑡𝑟

                           +𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1  (47) 

𝑣 𝑥𝑙 ,𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  � 𝑏𝑖(𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙

3𝑚

𝑖=1

𝑞𝑖,2(1)) + 𝑣 𝑥𝑙 ,𝑡𝑟 − 𝜑1 𝑡𝑟  

+𝑥𝑙  𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1  (48)

at various times by using successive iteration for r = 0,1,2,  3…

Convergence Analysis          

To establish the convergence of the proposed method, we considered the asymptotic 
extension of Equation 47 and 48 for a fixed value of t  = t r+1 and x = x1 as given below 
(Equation 49 and 50)

Where 𝐴 = 𝑢 𝑥𝑙 , 𝑡𝑟 +𝑓1 𝑡𝑟+1  − 𝑓1 𝑡𝑟  ,

𝐵 = 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟    (49)
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Where 𝐶 = 𝑣 𝑥𝑙, 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1  ,

𝐷 =  𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟    (50)

Now the convergence of the theorem will be proven with the help of the following 
lemma

Lemma 1:  le t  𝑢(𝑥)𝜖𝐿2(𝑅)  be any square-integrable funct ion such that 

𝑢𝑚(𝑥) ≤ 𝑀, ∀ 𝑥𝜖(0,1) and 𝐷∗
𝛼𝑢 𝑥 = �𝑎𝑖ℎ𝑖(𝑥)

∞

𝑖=1

. Then 𝑎𝑖 ≤
2 2 𝑀

3Γ 𝑚 − 𝛼 + 1 ×
1

3𝑗 𝑚−𝛼+1
2

   

Proof: Let 𝐷∗
𝛼𝑢 𝑥 = �𝑎𝑖ℎ𝑖(𝑥)

∞

𝑖=1

 be the exact solution and 𝐷∗
𝛼𝑢3𝑝 𝑥 = �𝑎𝑖ℎ𝑖(𝑥)

3𝑝

𝑖=1
 

be the approximated solution 

Now the error at the Jth level of resolution can be  represented by Equation 51 and the 
value of ai is given by Equation 52

𝐸𝑗
2

= 𝐷∗
𝛼𝑢 𝑥 − 𝐷∗

𝛼𝑢3𝑝 𝑥
2

= ∑ 𝑎𝑖ℎ𝑖(𝑥)∞
𝑖=3𝑝+1

2
=

 ∑ 𝑎𝑖ℎ𝑖(𝑥)∞
𝑖 =3𝑝+1   , ∑ 𝑎𝑖ℎ𝑖 𝑥  ∞

𝑖=3𝑝+1

= � � � 𝑎𝑖𝑎𝑘ℎ𝑖 𝑥 ℎ𝑘 𝑥  𝑑𝑥 =  � � 𝑎𝑖𝑎𝑘 � ℎ𝑖 𝑥 ℎ𝑘 𝑥  𝑑𝑥
1

0

∞

𝑘 =3𝑝+1

∞

𝑖 =3𝑝+1

∞

𝑘 =3𝑝+1

∞

𝑖 =3𝑝+1

∞

−∞

= � 𝑎𝑖𝑎𝑖

∞

𝑖=3𝑝+1

= � 𝑎𝑖
2

∞

𝑖=3𝑝+1

 
          (51)

𝑎𝑖 = 3
𝑗
2 � ℎ𝑖 𝑥

1

0
𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 = 3
𝑗
2 � 𝜓𝑖

1(𝑥�
1

0
𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 + � 𝜓𝑖
2(𝑥�

1

0
𝐷∗

𝛼𝑢 𝑥 𝑑𝑥     

= 3
𝑗
2

∫ −1
2

𝛼2(𝑖)
𝛼1(𝑖) 𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 + ∫ 2𝛼3(𝑖)
𝛼2(𝑖) 𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 + ∫ −1
2

𝛼4(𝑖)
𝛼3(𝑖) 𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 +

∫ 3
2

𝛼2(𝑖)
𝛼1(𝑖) 𝐷∗

𝛼𝑢 𝑥 𝑑𝑥 + ∫ − 3
2

𝛼4(𝑖)
𝛼3(𝑖) 𝐷∗

𝛼𝑢 𝑥 𝑑𝑥
          (52)
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By applying the mean value theorem (Sahoo & Riedel, 1998) of integralon on Equation 
52 , we get 𝜀1 ∈ 𝛼1 𝑖 , 𝛼2 𝑖  , 𝜀2 ∈ 𝛼2 𝑖 , 𝛼3 𝑖 ,𝜀3 ∈ 𝛼3 𝑖 , 𝛼4 𝑖  (Equation 53) 
such that

∫ 𝐷∗
𝛼𝑢 𝑥 𝑑𝑥 = 𝛼2 𝑖 − 𝛼1 (𝑖) 𝐷∗

𝛼𝑢 𝜀1 = 1
3𝑝

𝛼2(𝑖)
𝛼1(𝑖) 𝐷∗

𝛼𝑢 𝜀1

∫ 𝐷∗
𝛼𝑢 𝑥 𝑑𝑥 = 𝛼3 𝑖 − 𝛼2(𝑖) 𝐷∗

𝛼𝑢 𝜀2 = 1
3𝑝

𝛼3(𝑖)
𝛼2(𝑖) 𝐷∗

𝛼𝑢 𝜀2

∫ 𝐷∗
𝛼𝑢 𝑥 𝑑𝑥 = 𝛼4 𝑖 − 𝛼3(𝑖) 𝐷∗

𝛼𝑢 𝜀3 = 1
3𝑝

𝛼4(𝑖)
𝛼3(𝑖) 𝐷∗

𝛼𝑢 𝜀3   (53)

Now using Equation 53 ,Equation 52 becomes Equation 54

𝑎𝑖 =
3

𝑗
2

3𝑝
3 − 1

2
𝐷∗

𝛼𝑢 𝜀1 + 2𝐷∗
𝛼𝑢 𝜀2 −

3 − 1
2

𝐷∗
𝛼𝑢 𝜀3

     
= 3

𝑗
2

3𝑝
3−1

2
𝐷∗

𝛼𝑢 𝜀1 + 2𝐷∗
𝛼𝑢 𝜀2 − 3−1

2
𝐷∗

𝛼𝑢 𝜀3

     
= 3

−𝑗−2
2

3−1
2

𝐷∗
𝛼𝑢 𝜀1 + 2𝐷∗

𝛼𝑢 𝜀2 − 3−1
2

𝐷∗
𝛼𝑢 𝜀3

  (54)

Now by using the Caputo definition of fractional derivatives (Das, 2011) on Equation 
54, we get Equation 55,

𝑎𝑖= 3
−𝑗−2

2

3−1
2

1
Γ(𝑚−𝛼)

∫ 𝑢𝑚(𝑧)
𝜀1−𝑧 𝛼−𝑚+1

𝜀1
0 𝑑𝑧 + 2 1

Γ(𝑚−𝛼)
∫ 𝑢𝑚(𝑧)

𝜀2−𝑧 𝛼−𝑚+1
𝜀2

0 𝑑𝑧

− 3−1
2

1
Γ(𝑚−𝛼)

∫ 𝑢𝑚(𝑧)
𝜀3−𝑧 𝛼−𝑚+1

𝜀3
0 𝑑𝑧

    

= 3
−𝑗−2

2

2 Γ(𝑚−𝛼)

3 − 1 ∫ 𝑢𝑚(𝑧)
𝜀1−𝑧 𝛼−𝑚+1

𝜀1
0 𝑑𝑧 − 2 ∫ 𝑢𝑚(𝑧)

𝜀2−𝑧 𝛼−𝑚+1
0

𝜀2
𝑑𝑧

− 3 − 1 ∫ 𝑢𝑚(𝑧)
𝜀3−𝑧 𝛼−𝑚+1

𝜀1
0 𝑑𝑧 + ∫ 𝑢𝑚(𝑧)

𝜀3−𝑧 𝛼−𝑚+1
𝜀3

𝜀1
𝑑𝑧

 

= 3
−𝑗−2

2

2 Γ(𝑚−𝛼)

3 − 1 ∫ 𝑢𝑚(𝑧)
𝜀1−𝑧 𝛼−𝑚+1

𝜀1
0 𝑑𝑧 − ∫ 𝑢𝑚(𝑧)

𝜀3−𝑧 𝛼−𝑚+1
𝜀1

0 𝑑𝑧

− 3 − 1 ∫ 𝑢𝑚(𝑧)
𝜀3−𝑧 𝛼−𝑚+1

𝜀3
𝜀1

𝑑𝑧 − 2 ∫ 𝑢𝑚(𝑧)
𝜀2−𝑧 𝛼−𝑚+1

0
𝜀2

𝑑𝑧
 (55)

Taking modulus on both side of Equation 55 and appling the properties of modulus, 
we get  Equation 56, 57, 58, 59, 60, 61 and 62
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𝑎𝑖 =
3

−𝑗−2
2

2 Γ(𝑚 − 𝛼�

3 − 1 � 𝑢𝑚(𝑧)
𝜀1 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧 − � 𝑢𝑚(𝑧)

𝜀3 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧

− 3 − 1 � 𝑢𝑚(𝑧)
𝜀3 − 𝑧 𝛼−𝑚+1

𝜀3

𝜀1
𝑑𝑧 − 2 � 𝑢𝑚(𝑧)

𝜀2 − 𝑧 𝛼−𝑚+1

0

𝜀2
𝑑𝑧

 
          (56)

𝑎𝑖 ≤
3

−𝑗−2
2

2 Γ 𝑚 − 𝛼

3 − 1 � 𝑢𝑚 𝑧
𝜀1 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧 − � 𝑢𝑚 𝑧

𝜀3 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧

+ 3 − 1 � 𝑢𝑚(𝑧)
𝜀3 − 𝑧 𝛼−𝑚+1

𝜀3

𝜀1
𝑑𝑧 + 2 � 𝑢𝑚(𝑧)

𝜀2 − 𝑧 𝛼−𝑚+1

0

𝜀2
𝑑𝑧

 
          (57)

𝑎𝑖 ≤
3

−𝑗−2
2

2 Γ 𝑚 − 𝛼

3 − 1 � 𝑢𝑚 𝑧
1

𝜀1 − 𝑧 𝛼−𝑚+1 −
1

𝜀3 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧

+ 3 − 1 � 𝑢𝑚 𝑧
1

𝜀3 − 𝑧 𝛼−𝑚+1

𝜀3

𝜀1
𝑑𝑧 + 2 � 𝑢𝑚 𝑧

1
𝜀2 − 𝑧 𝛼−𝑚+1

0

𝜀2
𝑑𝑧

 
          (58)

𝑎𝑖 ≤
3

−𝑗−2
2 𝑀

2 Γ 𝑚 − 𝛼

3 − 1 � 1
𝜀1 − 𝑧 𝛼−𝑚+1 −

1
𝜀3 − 𝑧 𝛼−𝑚+1

𝜀1

0
𝑑𝑧

+ 3 − 1 � 1
𝜀3 − 𝑧 𝛼−𝑚+1

𝜀3

𝜀1
𝑑𝑧 + 2 � 1

𝜀2 − 𝑧 𝛼−𝑚+1

0

𝜀2
𝑑𝑧

 
          (59)

𝑎𝑖 ≤
3

−𝑗−2
2 𝑀

2 Γ 𝑚 − 𝛼
3 − 1

𝑚 − 𝛼
𝜀3 − 𝜀1

𝑚−𝛼 − 𝜀3
𝑚−𝛼

+𝜀1
𝑚−𝛼 + 𝜀3 − 𝜀1

𝑚−𝛼 − 2𝜀2
𝑚−𝛼

 (60)

𝑚 − 𝛼 >  0, 𝜀1 < 𝜀3 ⇒ 𝜀1
𝑚−𝛼 < 𝜀3

𝑚−𝛼 ⇒ 𝜀1
𝑚−𝛼 − 𝜀3

𝑚−𝛼 < 0 , 𝜀2 > 0 ⇒ −2𝜀2
𝑚−𝛼 < 0

⇒ 𝜀1
𝑚−𝛼 − 𝜀3

𝑚−𝛼 − 2𝜀2
𝑚−𝛼 < 0

𝑎𝑖 ≤
3

−𝑗−2
2 𝑀

2 Γ 𝑚 − 𝛼
3 − 1

𝑚 − 𝛼 2 𝜀3 − 𝜀1
𝑚−𝛼 <

4. 3
−𝑗−2

2 𝑀
2 Γ 𝑚 − 𝛼 + 1

             = 2 2 3
−𝑗−2

2 𝑀
Γ 𝑚−𝛼+1

× 1
3𝑗(𝑚−𝛼)  (61)
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𝑎𝑖 ≤
2 2 𝑀

3Γ 𝑚 − 𝛼 + 1 ×
1

3𝑗 𝑚−𝛼+1
2      (62)

Theorem 1: - If u (x, t)  represent the exact solution and u3m (x, t)  represents the Scale 3 
Haar wavelet-based approximated solution, then for a fixed value of t  =  t 1

𝐸𝑗 = 𝑢 𝑥, 𝑡 − 𝑢3𝑚 (𝑥, 𝑡) ≤
4 2𝑀  𝐾 ∆𝑡
Γ(𝑚 − 𝛼 + 1)

3−𝑗(𝑚−𝛼+1
2�

1 − 3− 𝑚−𝛼−1
2

Proof. At jth level of resolution, error estimation for the solution is given by

𝐸𝑗 = 𝑢 𝑥, 𝑡 − 𝑢3𝑚 (𝑥, 𝑡) = ∆𝑡 ∗ ∑ 𝑎𝑖(𝑞𝑖,2 𝑥 − 𝑥∞
𝑖=3𝑚+1 𝑞𝑖,2(1))

𝐸𝑗
2

= ∆𝑡 2 ∗ ∑ 𝑎𝑖(𝑞𝑖,2 𝑥 − 𝑥∞
𝑖=3𝑚+1 𝑞𝑖,2(1))

2
=

∫ ∑ 𝑎𝑖(𝑞𝑖,2 𝑥 − 𝑥∞
𝑖=3𝑚+1 𝑞𝑖,2(1))  �  ∑ 𝑎𝑘(𝑞𝑘,2 𝑥 − 𝑥∞

𝑘=3𝑚+1 𝑞𝑘,2(1))∞
−∞

≤ ∆𝑡 2 ∗ ∑ ∑ ∫ 𝑎𝑖𝑎𝑘 𝑞𝑖,2 𝑥 − 𝑥𝑞𝑖,2 1 𝑞𝑘,2 𝑥 − 𝑥𝑞𝑘,2 1 𝑑𝑥1
0

∞
𝑘=3𝑚+1

∞
𝑖=3𝑚+1  

≤ ∆𝑡 2 ∗ 𝑎𝑖𝑎𝑘  𝑀𝑖,𝑘

Where 𝑀𝑖,𝑘 = Sup
𝑖 ,𝑘

∫  𝑞𝑖,2 𝑥 − 𝑥𝑞𝑖,2 1 𝑞𝑘,2 𝑥 − 𝑥𝑞𝑘,2 1 𝑑𝑥1
0

𝐸𝑗
2

≤ ∆𝑡 2 ∗ ∑ 𝑎𝑖(𝑎3𝑚𝑀𝑖,3𝑚 + 𝑎3𝑚+1𝑀𝑖,3𝑚+1 + 𝑎3𝑚+2𝑀𝑖,3𝑚+2
+𝑎3𝑚+3 ,𝑀𝑖,3𝑚+3 + ⋯ )

∞
𝑖=3𝑚+1

≤ ∆𝑡 2 ∗ ∑ 𝑎𝑖𝑀𝑖(𝑎3𝑚 + 𝑎3𝑚+1 + 𝑎3𝑚+2 + 𝑎3𝑚+3 , + ⋯ )∞
𝑖=3𝑚+1

Where 𝑀𝑖 = Sup 𝑀𝑖,𝑘
𝑖 ,𝑘

Using Lemma 1 in the equation we get

𝐸𝑗
2

≤ 4 2 𝐾
Γ(𝑚−𝛼+1)

∆𝑡 23−𝑗(𝑚−𝛼+1
2)

1−3− 𝑚−𝛼−1
2

  ∑ 𝑎𝑖𝑀𝑖
∞
𝑖=3𝑚+1

Take 𝑀 = Sup 𝑀𝑖
𝑖

𝐸𝑗
2

≤. 4 2  𝐾 ∆𝑡 2

Γ(𝑚−𝛼+1)
𝑀3−𝑗(𝑚−𝛼+1

2�

1−3− 𝑚−𝛼−1
2

  ∑ 𝑎𝑖
∞
𝑖=3𝑚+1 = 4 2  𝐾 ∆𝑡 2

Γ(𝑚−𝛼+1)
𝑀3−𝑗(𝑚−𝛼+1

2�

1−3− 𝑚−𝛼−1
2

∗ 4 2  𝐾
Γ(𝑚−𝛼+1)

3−𝑗(𝑚−𝛼+1
2�

1−3− 𝑚−𝛼−1
2
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𝐸𝑗 =
4 2𝑀  𝐾 ∆𝑡
Γ(𝑚 − 𝛼 + 1)

3−𝑗(𝑚−𝛼+1
2�

1 − 3− 𝑚−𝛼−1
2     (63)

It is clear from the Equation 63 that error bound is inversely proportional to the level 
of resolution which means that with the increase in the level of resolution, error bound 
decreases i.e. 𝑗 → ∞ ⇒ 𝐸𝑗 ⟶ 0. This proves the convergence of solution u (x, t). In 
a similar way, the convergence of v(x, t)  solution can be proved. It ensures the stability 
of the solutions.

RESULTS AND DISCUSSIONS FROM NUMERICAL EXPERIMENT

To describe the appropriateness of the present scheme for fractional coupled Burgers’ 
equation, solutions of two problems obtained by the present scheme had been analyzed 
and absolute errors were calculated to check the efficiency of the present scheme with the 
help of following formulas 

Absolute error = 𝑢𝑒𝑥𝑎𝑐𝑡 𝑡𝑙 − 𝑢𝑛𝑢𝑚 𝑡𝑙

where t i represents the collocation points of the domain.

Numerical Experiment No. 1: - Consider the following space-time fractional coupled 
Burgers’ Equation 64

 
∂𝛼𝑢
∂𝑡𝛼 =

∂2𝑢
∂𝑥2 + 2 𝑢

∂𝛽 𝑢
∂𝑥𝛽 −

∂ 𝑢𝑣
∂𝑥     , 𝑥 𝜖  0 , 1     , 𝑡 𝜖  [0, 𝑇�

 
∂𝛾 𝑣
∂𝑡𝛾 =

∂2𝑣
∂𝑥2 + 2 𝑣

∂𝛿 𝑣
∂𝑥𝛿 −

∂ 𝑢𝑣
∂𝑥     , 𝑥  𝜖 0 , 1     , 𝑡 𝜖 [0, 𝑇�

  (64)

Subjected to the boundary conditions given in Equation 65

𝑢 0, 𝑡 = 0, 𝑢 1, 𝑡 = 𝑒−𝑡 sin 1   , 𝑣 0, 𝑡 = 0, 𝑣 1, 𝑡 = 𝑒−𝑡 sin 1 ∀ 𝑡 𝜖  [0, 𝑇] (65)

and with the initial condition given in Equation 66

𝑢 𝑥 , 0 = sin 𝑥       , 𝑣 𝑥, 0 = sin 𝑥               ∀   x ϵ 0 , 1   (66)

The exact solution of the Equation 64 subjected to the conditions given in Equation 
65 and 66 for 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1 is
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𝑢 𝑥, 𝑡 = 𝑒−𝑡 sin 𝑥           , 𝑣 𝑥 , 𝑡 = 𝑒−𝑡 sin𝑥, 𝑢 𝑥, 𝑡 = 𝑒−𝑡 sin 𝑥           , 𝑣 𝑥 , 𝑡 = 𝑒−𝑡 sin𝑥

The numerical solution obtained by applying the given methodology for Equation 64 
subjected to the conditions given in Equation 65 and 66  is 

𝑢 𝑥𝑙 , 𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  � 𝑎𝑖(𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙

3𝑚

𝑖=1

𝑞𝑖,2(1)) + 𝑢 𝑥𝑙 ,𝑡𝑟 − 𝑓1 𝑡𝑟

                          +𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1

𝑣 𝑥𝑙 ,𝑡𝑟+1 = 𝑡𝑟+1 − 𝑡𝑟  � 𝑏𝑖(𝑞𝑖,2 𝑥𝑙 − 𝑥𝑙

3𝑚

𝑖=1

𝑞𝑖,2(1)) + 𝑣 𝑥𝑙 ,𝑡𝑟 − 𝜑1 𝑡𝑟

                           +𝑥𝑙  𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1

at the various times by using successive iteration for r  =  0 ,1 ,2 ,3 , . . .. The process 
of finding the solution in the discrete form starts by taking 𝑟 = 0, 𝑡0 = 0  and 
𝑓1 𝑡𝑟 = 0, 𝑓2 𝑡𝑟 = 𝑒−𝑡𝑟 sin 1,  𝜑1 𝑡𝑟 = 0, 𝜑2 𝑡𝑟+1 = 𝑒−𝑡𝑟 sin 1 for  𝑟 = 0, 𝑡0 = 0   
and rest all the values will be obtained using the iterative process.

Results obtained for example 1 are also reported by the way of figures and tables. It 
can be seen from Figure 1 and Figure 2 that the solution obtained by the proposed method 
for the case (when 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1) is in good agreement with the analytical solution 
available in the literature. Table 1 and Figure 3 show the absolute errors in the results 
obtained at the different collocation points for the case 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1  and it is of 
order 10–5 which assures the efficiency and reliability of the proposed method. In Table 
2, results obtained by the present method are compared with another method (Ray, 2013) 
available in the literature and it is found that the present method outperforms over another 
method available in the literature. Table 3 explains the absolute error in the solution for 
different values of ∆𝑡  which illustrate the direct dependence of  absolute error on meshsize 
for time variable. For better visibility contour plots and 2D-solution plots are also given 
in Figure 4 and Figure 5. Most important fact has been explained by the Figure 6 and 
Figure 7 that when we shift from one classical order derivative (integer-order 0) to another 
classical order derivative (integer-order 1) in the coupled Burgers’ equation the behavior 
of the solution does not remain the same, in fact many variations have been  observed in 
the solution space with the variation in the order of time derivative or space derivative 
which gives the better insight of microscopic behavior of  poly-dispersive sedimentation  
phenomena of two different types of particle concentration in the fluid.
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Table 3  
Maximum absolute error in numerical results u(x,t)  and v(x,t) at the  integer order α= β= γ= δ =1 with η= 
ξ = -2, μ=λ=1  for different values of Δt 

Δt 𝑬(𝒖) ∞ 𝑬(𝒗) ∞

0.0100 1.22142096728672410–4 1.22142096728672410–4

0.0010 2.218389533070741×10–6 2.218389533070741×10–6

0.0001 2.41311621795858910–8 2.41311621795858910–8
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Figure 1. 3D Graphical representation of exact and approximated solution u(x,t) of Experiment No. 1 for 
integer  order α= β= γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.01
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Figure 2. 3D Graphical representation of exact and approximated solution v(x,t) of Experiment No. 1 at 
integer order α= β= γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.01

Figure 3. Surface plot of absolute error in the solutions u(x,t) and v(x,t) of Experiment No. 1 for j=3 at the  
integer order α= β= γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.01
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Figure 4. Contour representation of solutions u(x,t) and v(x,t) of Experiment No. 1 at the integer order α= β= 
γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.01
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Figure 5. 2D-Graphical representation of exact and approximated solutions u(x,t) and v(x,t)  of Experiment 
No. 2 for different values of t at the  integer order α= β= γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.01
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Figure 6. Approximate solution of Experiment No. 1 in 3D with different values of α, β ∈ (0,1] and fixed 
values of   γ= δ =0.25 with  η= ξ = -2, μ=λ=1 and Δt = 0.001
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Figure 7. Approximate solution of Experiment No. 1 in 3D with different values of α, β, γ, δ ∈ (0,1] for which 
the solution behaves differently at η= ξ = -2, μ=λ=1 and Δt = 0.01.

Numerical Experiment No. 2: - Consider the following space-time fractional coupled 
Burgers’ Equation 67

 
∂𝛼𝑢
∂𝑡𝛼 =

∂2𝑢
∂𝑥2 + 2 𝑢

∂𝛽 𝑢
∂𝑥𝛽 −

∂ 𝑢𝑣
∂𝑥     , 𝑥 𝜖  0 , 1     , 𝑡 𝜖  [0, 𝑇�

 
∂𝛾 𝑣
∂𝑡𝛾 =

∂2𝑣
∂𝑥2 + 2 𝑣

∂𝛿 𝑣
∂𝑥𝛿 −

∂ 𝑢𝑣
∂𝑥     , 𝑥  𝜖 0 , 1     , 𝑡 𝜖 [0, 𝑇�

  (67)

Subjected to the boundary conditions given in Equation 68

𝑢 0, 𝑡 = 0, 𝑢 1, 𝑡 = 0, 𝑣 0, 𝑡 = 0, 𝑣 1, 𝑡 = 0 ∀ 𝑡 𝜖 [0, 𝑇] (68)

and with the initial condition given in Equation 69

𝑢 𝑥 , 0 = sin 2𝜋𝑥 − 𝜋     ,  𝑣 𝑥, 0 = sin 2𝜋𝑥 − 𝜋          ∀   x ϵ 0 , 1  (69)

Analytic solution of  Equation 67 when 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1  is given by Equation 
70 as

𝑢 𝑥, 𝑡 = 𝑒−4𝜋2𝑡 sin 2𝜋𝑥 − 𝜋     , 𝑣 𝑥, 𝑡 = 𝑒−4𝜋2𝑡 sin 2𝜋𝑥 − 𝜋  (70)

The numerical solution obtained by applying the given methodology is 

                        +𝑥𝑙 𝑓2 𝑡𝑟+1 − 𝑓1 𝑡𝑟+1 − 𝑥𝑙 𝑓2 𝑡𝑟 − 𝑓1 𝑡𝑟 + 𝑓1 𝑡𝑟+1
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                           +𝑥𝑙  𝜑2 𝑡𝑟+1 − 𝜑1 𝑡𝑟+1 − 𝑥𝑙 𝜑2 𝑡𝑟 − 𝜑1 𝑡𝑟 + 𝜑1 𝑡𝑟+1

at various times by using successive iteration for r  =  0 , 1 , 2 , 3 , . . . where  
𝑓1 𝑡𝑟 = 0, 𝑓2 𝑡𝑟 = 0, 𝜑1 𝑡𝑟 = 0, 𝜑2 𝑡𝑟 = 0, 𝑓1 𝑡𝑟 = 0, 𝑓2 𝑡𝑟 = 0, 𝜑1 𝑡𝑟 = 0, 𝜑2 𝑡𝑟 = 0 for 𝑟 = 0, 𝑡0 = 0 and rest all the values 
will be obtained using the iterative process.

Table 4 explains the absolute errors in the results obtained by the proposed method 
for example 2 by considering the domain 𝑥 ∈ 0,1  and ∆𝑡 = 0 and it is of order 10–5  
which assures the efficiency and reliability of the proposed method. It can be seen from 
Figure 8 to Figure 14 that the solution obtained by the proposed method for the case 
(when𝛼 = 𝛽 = 𝛾 = 𝛿 = 1 is in good agreement with the analytical solution available in 
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Figure 8. 3D Graphical representation of exact and approximated solution u(x,t) of Experiment No. 2  at 
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Figure 11. Contour representation of solutions u(x,t) and v(x,t) of Experiment No. 2 at the integer order α= β= 
γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.001
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Figure 12. 2D-Graphical representation of exact and approximated solutions u(x,t) and v(x,t)  of Experiment 
No. 2 for different values of t at the  integer order α= β= γ= δ =1 with η= ξ = -2, μ=λ=1 and Δt = 0.001

Table 5 
Maximum absolute error in numerical results u(x,t)  and v(x,t) at the  integer order α= β= γ= δ =1 with η= 
ξ = -2, μ=λ=1  for different values of  Δt 

Δt 𝑬(𝒖) ∞ 𝑬(𝒗) ∞

0.0100 2.09861158048527×10–4 2.098611580485271×10–4

0.0010 3.764653977598853×10–6 3.764653977598853×10–6

0.0001 6.090606685656975×10–8 6.090606685656975×10–8

the literature. Table 5 explains the absolute error in the solution for different values of ∆𝑡 
which illustrate the direct dependence of  absolute error on meshsize for time variable. 
It can also be observed from the Figure 13 and Figure 14 that whenever we are changing 
the values of γ and δ by fixing the values of α, β, we are getting the change in the solution 
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Figure 13. Approximate solution of Experiment No. 2 in 3D with different values of γ, δ ∈ (0,1] and fixed 
values of   α=β= 0.25 with η= ξ = -2, μ=λ=1 and Δt = 0.001

space of v(x, t)  and there is no change in the solution space of u (x, t)  and vice versa. It 
is  because of the reason that α, β are orders of the time and space fractional derivatives 
of u (x, t)  respectively  and that γ, δ are orders of the time and space fractional derivatives 
of u (x, t)  respectively  which explains the importance of fractional models in explaining 
the microscopic behavior of the phenomenon .
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Figure 14. Approximate solution of Experiment No. 2 in 3D with different values of α, β ∈ (0,1] and fixed 
values of   γ= δ =0.5 with η= ξ = -2, μ=λ=1 and Δt = 0.001
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CONCLUSION

We have developed a scale 3 Haar wavelet-based collocation scheme to find the solution of 
nonlinear coupled fractional differential equations. Two examples of space-time fractional 
coupled Burgers’ equation with different boundary and initial constraints were considered to 
prove the reliability and efficiency of the proposed numerical scheme. It had been observed 
in with the help of MATLAB stimulation and computations that solution was behaving 
differentially as we varied the order of fractional derivatives in space-time fractional coupled 
Burgers’ equation and giving the accuracy of order 10–5 at integer-order derivative (i.e. 
at 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1) for j=2  which demonstrated the performance of the scheme.The 
proposed method was compared with another method available in the literature and it was 
found that the proposed method was working better than the other method. Looking at 
the performance of the method for the given set of numerical experiments, the proposed 
method can be extended to explain the behavior of the different phenomenon by solving 
the system of fractional differential equations governing those phenomena. The proposed 
method provides an insight into the microscopic behavior of phenomena under study.  The 
given method is also fully supportive and compatible with the ordinary, partial, fractional 
differential equations and integral equations. 
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