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ABSTRACT

The aim of this study is to develop a hybrid method using scale 3 Haar wavelets for
obtaining the solution of coupled space-time fractional Burgers’ equation. Scale 3 Haar
wavelets were used to estimate the solution by series approximation. Caputo and Riemann-
Liouville definitions were used to handle the fractional derivatives and integrals in the
problem. A quasi-linearization technique was implemented to handle the nonlinearity in
the problems. Two examples of coupled space-time fractional Burgers’ equations were
studied to analyze the performance of the proposed technique.

Keywords: Caputo derivatives, fractional coupled Burgers’ Equation, Quasi-linearization, Riemann-Liouville
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INTRODUCTION

Fractional calculus emerges as a great tool in explaining the physical and chemical
phenomenon with alienate kinetics having microscopic complex behavior. There are
fractional differential models which have a non-differentiable but continuous solution such
as Weierstrass type functions (Zahle & Ziezold, 1996). These kinds of characteristics are
not possible to explain with the help of ordinary or partial differential models. Earlier the
field of fractional calculus was purely mathematical without any visible application but

in these days, fractional calculus has gained

a huge importance in the field of science
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has also been observed experimentally and from the real-time observation that there are
many complex systems in the real world like relaxation in viscoelastic material, pollution
diffusion in the surrounding, charge transport in amorphous semiconductors and many
more which show anomalous dynamics. This capability of fractional differential equations
of explaining the abnormal dynamic of the system with more efficiency and accuracy has
gained huge attention from the scientific community. Many of the important classical
differential equations with integer-order has got extensions to the generalized fraction
differential equation with an arbitrary order for in-depth study of the corresponding
physical model. But general analytic solution for many fractional differential equations
which are non-homogeneous in nature are very difficult and cumbersome to achieve.
Moreover, finding the solution of such equations becomes more challenging when there
are nonlinearities in the equations.

Therefore, many researchers are involved in developing the various numerical and
semi-analytic schemes for finding solutions to the different problems governed by these
differential equations. Some of the fractional differential equations which had been recently
studied because of their capability of explaining the real time phenomena’s were fractional
Black-Scholes equation (Duan et al., 2017), time-fractional Klein—-Gordon equations
(Hosseini et al., 2018; Inc et al., 2018), time-fractional Fisher’s equation (Atangana, 2016;
Zhang et al., 2014), fractional Bagley Torvik equation (Ray, 2012), time-fractional Burgers’
equation (Inc, 2008; Khan et al., 2012), Fitzhugh—Nagumo fractional differential equation
(Kumar et al., 2018), fractional Ginzburg-Landau equation (Mohebbi, 2018; Shen et al.,
2018), fractional Korteweg-de Vries—Burgers’ equation ( Odibat & Momani, 2009; Wang,
2006), nonlinear fractional order oscillatory Van der Pol system (Ray & Patra, 2013),
fractional Poisson equation (Heydari et al., 2013), fractional Riccati differential equations
(Momani & Shawagfeh, 2006), fractional Schrodinger equation (Bezerra et al., 2018),
fractional Sine-Gordon equations (Karayer et al., 2018), fractional Bioheat equations (Singh
etal., 2011), time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation (Baleanu et
al., 2018), Sharma—Tasso—Olver equation (Roy et al., 2018), Fokker—Planck fractional
equation (Mahdy & Marai, 2018; Zhang et al., 2018), fractional Telegraph equation
(Momani, 2005; Tawfik et al., 2018), time-fractional generalized Boussinesq equation
(Lu et al., 2018), Navier—Stokes time-fractional differential equation (Momani & Odibat,
2006b), time-fractional wave equation (Odibat & Momani, 2006) and two-dimensional
fractional Helmholtz equations (Abuasad et al., 2019).

Fractional coupled Burgers’ equation is also a very important equation in the field of
fluid mechanics to study the motion of fluids concentrations under the effect of gravity.
It is a mathematical model of time-dependent sedimentation or creaming of different
concentrations of two kinds of particles in fluid colloids or suspensions, under the effect
of gravity (Esipov, 1995). Burgers’ equations are the special case of Navier Stokes’
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equations and are very much important in the field of science and technology. Researchers
are in continuous progress to study the different characteristics of the phenomenon
governed by the fractional models by developing the different algorithms to solve time-
fractional coupled Burgers’ equation such as Fractional Variational iteration method
(FVIM) (Prakash et al., 2015), Differential Transformation Method (DTM) (Liu & Hou,
2011), Homotopy Perturbation Method (HPM) (Yildirim & Kelleci, 2010), Coupled
Fractional Reduced Differential Transform Method(CFRDTM) (Ray, 2013) and Adomian
Decomposition Method (ADM) (Chen & An, 2008). But the study of characteristics of
different concentrations of two kinds of particles governed by fractional coupled Burgers’
equation has not been investigated yet by any of the scale 3 Haar wavelet-based technique
simultaneously with space and time fraction.

Wavelets are one of the modernistic orthonormal functions which have the capability
of dilation and translation. Because of these properties, numerical techniques that involve
wavelet bases are showing the qualitative improvement in contrast with other methods. In
literature, dyadic wavelets are in preponderance. In 1995, Chui and Lian had developed
the scale 3 Haar wavelets by using the process of multiresolution analysis. In 2018, Mittal
and Pandit (2018a, 2018b & 2019) had used the scale 3 Haar wavelets for solving the
various types of differential equations and found that these wavelet bases were equally
competent in solving the various types of mathematical models governed by differential
equations. Also, it was shown by them that the scale 3 Haar wavelet had a faster rate of
convergence as compared to the dyadic wavelets. Moreover, investigation of characteristics
of the solution to the fractional coupled Burgers’ equation has not been done yet by the
Scale 3 Haar wavelet methods as far as our knowledge is concerned. This encourages
us to develop a new technique using scale 3 Haar wavelet for analyzing the behavior of
systems governed by the fractional coupled Burgers’ equation.

The prime objective of the proposed work is to provide a new numerical technique
for obtaining the solution of space-time fractional-coupled Burgers’ equation (Equation 1)
emerging in the field of fluid dynamics using scale 3 Haar wavelet bases

0% _ 0%u Fu  o(uv) bl teloT
gte ~ox2 MUgpB Ko o xelabl Ltell,
yo_dv P o)
o T axt $Vgx8 ox

(1)
, x€a,b] ,te[O,T]

subjected to the boundary constraints (Equation 2)

u(a, t) = @O ,ub, ) =), viat) =@ () ,vbt)=¢,(t) Vte[0,T]
()
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and with the constraints at the initial value (Equation 3)
u(x,00 =h() , v(x0) =pk) vV xela,b] (3)

where o, f5, y, 0 represents the order of fractional derivatives such that 0 <a, f, y, 0 < 1.
Different variations can be observed in the solution space by giving different values to
these four parameters o, £, y, 0. However, on taking o = f =y = ¢ =1 the fractional-coupled
Burgers’ equation will respond like a classical coupled Burgers’ equation with integer
order. 5, & u, 4 are arbitrary constants depending upon the system parameter like Peclet
number and Reynold number.

The manuscript follows the sequence of sections as described: In section 2, explicit
forms of scale 3 Haar wavelets with their families and procedure to find their integrals
have been explained briefly. Representation of the solution using scale 3 Haar wavelets
is explained in section 3. Section 4 explains the method of solution using scale 3 Haar
wavelets. In section 5, the convergence of the method is discussed. In section 6, solutions
of two different coupled Burgers’ fractional equations are produced using the present
method to analyze the efficiency and performance of the present method. In section 7, the
conclusion drawn from the results and future research ideas are given.

Scale 3 Haar Wavelets and its Integrals

The mathematical expressions for father wavelet (Scale 3 Haar function) and mother
wavelets for scale 3 Haar wavelet family with dilation factor three (Chui & Lian, 1995;
Mittal & Pandit, 2018a) are given in Equation 4, 5 and 6

Haar scaling function h, (t) = {0 Isowh
elsewhere

-1 a, (i) <t < a,(i)

() =i — ) = L 2 ay (i) <t < as(i)
MO=VER =5 ]l <<’
0 elsewhere

fori=24.3p—-1

()
a1 (i) <t < ay(i)

1

oy o _ |3) 0 ay(i) <t < asz(i) o
hi () = 92(37t k)—ﬁ . az(i)St<ai(i)' for i=36,..3p
0

elsewhere
(6)
, k . 3k+1 . (3k+2) ] k+1 o,
h = — = —_— = — = — =3] =0,1,2,...,
where CZl (l) p) az (l) 3p ) a3 (l) 3p ,a4(l) D s p ’.]
k=012, ..,p—1.
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Here i, j, krespectively represent the wavelet number, level of resolution (dilation) and
translation parameters of wavelet family. The values of i (for i > 1) can be calculated with
the help of j, k by using the following relations i — 1 = 3+ 2k for even values of i and i — 2
= 3/+ 2k for odd values of i. By using this relation for different dilation and translations
of hy(?), hs(¢) we will get the wavelet family as 4(2), hy(¢), h3(2), ha(2), h5(2), he(?)... where
hy(t) and h5(¢) are also called mother wavelets and rest all the wavelets which we have
obtained from mother wavelets are called daughter wavelets.

The main difference which makes the scale 3 Haar wavelets better than the dyadic
wavelets is that only one mother wavelet is responsible for the construction of whole
wavelet family but in case of scale 3 Haar wavelets, two mother wavelets with different
shapes are responsible for the construction of the whole family. Because of this fact, scale
3 Haar wavelets increase the convergence rate of the solution. The construction of scale
3 Haar wavelet family is done by using the properties of Multi-resolution analysis which
are described below

Now one can easily integrate the equations (Equation 4, 5 and 6) with the desired
number of times over the interval [A, B) by using Riemann Liouville Integral formula
(Das, 2011) as given in Equation 7

1 t
150 = 175 fA RGOt — )F-1dx
VO0<B<m, m=123u.., i=123 ....3p )

After evaluating the above integrals for Equation 4, we get Equation 8

B
qpi(t) = 2 fori= (8)

Using Equation 7 on Equation 5, we get the values of gg;(1)s for i =
2,4,6,8...,3p—1 are given by Equation 9

0 for 0<t<a(i)
F(ﬁ_i 0 (t-a (i))ﬁ for @ (i) <t < ay(i)
qp;(0) = % F(ﬂ11+ 0 [(t- al(i)):+3(t— az(i)):] ﬂ for ay(i) <t < as(i)
rga (@) B3(-n®) -3(-a0)] for a;(i) St < (i)
r(ﬁ1+ 5 (@) +3(t- ©0) -3t~ 60) + (- @®)'] fra® <t

)

Using Equation 7 on Equation 6, we get the values of gg;(t)’s for i =
3,5,7,9...,3 pwhich are given by Equation 10
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0 for 0<t<a(®)
r(ﬂ1+ 5(t-a®)’ for )<t =el)
1 Y NG i i
qpi(®) = \/é m[(t -, () (- ()] for @) st<as)
- a0 - 60) - (-0 for a() <t<a(®
_r(ﬂ1+_1)' (60 @) (- 0®)" - (- a0) + (- a,0)] fora@ <=1

(10)

Approximation of Solution

Using the properties of scale 3 Haar wavelets, any function X(t) € Ly(R) can be expressed
as given in Equation 11

u(®) = Ziw:oaihi ®)=ahy )+ Zeveni ailpl (Bjt - k) + Zodd i ai¢2(3jt - k)
(11)
Here a;‘s are the wavelet coefficients whose values are to be determined by the proposed

method. But for computational purpose, one can consider a finite number of terms. By
considering the first 3p terms to approximate the function u(¢) we get Equation 12

3p
u(®) ~usp = ) aihi(® (12

4

wherep=3j,j=0,1,2...

METHOD OF SOLUTION

By applying the quasi-linearization technique to linearize the non-linear terms of Equation
1, 2 and 3, we get the equivalent expression given by Equaion 13, 14, 15 and 16

W )ri1 = Ure1 Wy + ur () ra1 — ur (V2)r (13)
Wudr+1 = Vrea Wy + v W) — vr () (14)
(uuﬁ)rﬂ = ur+1(uﬁ)r + ur(uﬁ)rﬂ —Ur (uﬁ)r (15)
WVsdrs1 = Vrp1Ws)r + v Ws)r1 — v (Vs)y (16)

Using Equation 13, 14, 15 and 16, non-linear coupled fractional differential Equation
1, 2 and 3 transformed into a sequence of linear differential Equations 17 and 18
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0%u
(5) = Conoras = n s, i), = o),
—HU [(ur+1(vx)r +u, (Ux)r+1 — Uy (vx)r) + (Ur+1(ux)r +v (ux)r+1 — U (ux)r)]
(17)
o'v
W = (We)r+1 = EWrp1(Ws)r + v Ws)rs1 — v (05);)
r+1
_A[(urﬂ(vx)r + Uy (Ux)r+1 —Up (Ux)r) + (vr+1(ux)r + Uy (ux)r+1 — U (ux)r)]
(18)
subjected to the boundary constraints given by Equation 19
u(a, tre1) = filtrr1) s ulbtryr) = fo(try1) , v(@, tri1) = @1 (tr41)

(19)
v(b,trs1) = @2(trs1)

and with the constraints on initial values given by Equation 20
u(x, 0) = h(x),v(x,0) = p(x),V xela,b] ,t,41 €[0,T]andr = 0,1,2--m —1 (20)

here ¢, 4 represents (r+ 1 )th approximation for t in the process of quasilinearization.

3m

(6, = ) agh () e
i=1
3m
Ve (5.6) = ) bihy() (22)
i=1
Integrating the Equation 21 and 22 with respect to t from ¢, to 7, to we get
3m
uxx(x' tr+1) = (tr+1 — tr )Zaihi(x) + uxx(x' tr) (23)
i=1
3m
Uxx (x' tr+1) = (tr+1 - tr )Zbihi (x) t Vxx (x: tr) (24)
i=1

Now integrating Equation 23 and 24 with respect to x within the limits 0 to x we get

3m

Uy (x' tr+1) = (tr+1 - tr )Zaiqi,l(x) + ux(xitr) + (ux(o’ tr+1) - ux(ovtr)) (25)
i=1
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3m

Uy (X tpyq) = (bryr — & )Zbi‘h’,l(x) + v (x,tp) + (vx (0,t41) — 1, (0, tr)) (26)
i=1

Again, integrating the Equation 25 and 26 with respect to x within the limits 0 to x
we get

u(x, try1) = (trpg — )Z quZ(x)+ (u(x ty) — u(0, tr))

+x(ux 0, tr+1) —u, (0,,)) + u(0, tr41) 27)

3m
v(x, tr+1) = (tr+1 -t )Zbiqi,Z (x) + (v(x, tr) - 1](0, tr))
+x(vx (0, tr+l1=)1— v, (0, tr)) +v(0,ty41) (28)

on substitute the values of unknown quantities ux(0,t,11)— u,(0,t,),
Uy (0, tr+1) — v, (0,t,) by evaluating it from the above equations using x = 1 in the
Equation 27 and 28, we get

u(x tr+1) (tr+1 t )za (‘hz(x) leZ(l)) + (u(x t ) u(O tr))

+x(u(1 tr+1) u(0, tr+1)) (U(L t) —u(0, tr)) +u(0,tr41) (29)

U(X, tr+1) = (tr+1 - tr )Z bi(CIi,z (x) - xCIi,z (1)) + (v(x, tr) - 1)(0, tr))

i=1
+X(V(1, tr+1) —v(0, tr+1)) - x(v(l, t,)—v(0, tr)) +v(0,tr41)  (30)

3m
Uy (x; tr+1) = (tr+1 -t )Z ai(qi,l(x) - Qi,z(l)) + Uy (xr tr)

i=1
+(u, tr41) = u0, t41)) — (@ t,) —u(0,¢,)) (31)
3m

Betran) = Cra = b Zb(qil(x) () + v )

Ho(L tya) - 000, tre1)) = (v(L,6,) = v(0,t,) (32)
3m
aa " — t, 1-a

Ipa Wtren) = (tr+(12 — (tx)) lZl a;i(qi2(x) —x q;2(1)

+x Eit_“(u(l tr+1) —u(0, tr+1))+ 57 (0 tre1) (33)
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m
0fu xP 0fu
ax—,;(x, tre1) = (b1 — tr )LZ a;(qiz-p(x) — T2 =) %2 W) +775 (x, tr)

+ r(jchﬁ) [(u(l, tr1) —u(0, tr+1)) - (u(l, ty) = u(0, tr))] (34)

3m
714 tryr — t )Y
at: (o tryq) = ( lf(lz_y)) zbi(%’,z(x) —xq;2(1))
at“(”(l tr1q) — v(0, tr+1))+ oa 200, tr41) (35)

x6 6

8 S &%y
5t = (= ¢ )Zamqi,z_ﬁ(x) G =5y 55 (ot

6
o 5)[(”(1 trer) = (0,tr41)) — (v(1, ) = v(0,8))]  (36)

Now using the boundary constraints and discretizing the space variable as X = x;

where x; = %;1 ,1=01,2,.... 2p in the Equation 29, 30, 31, 32, 33, 34, 35 and 36 and

substituting the values obtained in Equation 17 and 18 the following system of equations
(Equation 37) are obtained for different values of »

A1x3pAspx3p + D1x3pBapxzp = Cix3p } 37)

b1><3p D3p><3p + a1><3pE3pX3p = F1><3p
Where the Equation 38,39,40,41,42 and 43 respectivelyb represents the values of A4,
B, C, D, E and F as

— 1-a
R (eSO BMTNGY)

(uﬁ)r (CIi,z (x) —x,q;2 (1))

A= hi(x)— 1 x,f
—(try1— tr) Qip-p (X)) — F(Z ) (%,2(1))

—u ((vx)r (CIi,z (xD)—x; qi2 (1)) + v (qt,l(xl) —{qi2 (1))) | (38)

B= [ = ) (@ (01260~ 21002 ) 1 (0130 = 3 ) ) (39)

Pertanika J. Sci. & Technol. 28 (2): 579 - 607 (2020) 587



Geeta Arora, Ratesh Kumar and Harpreet Kaur

C = u,(xt,)
=1 |(up), (e t) = ) +x1(foltre) = filtrsn)) = xi(fot) = i) + filtrin))

+u, <a /;(xl tr) + = F(Z ﬁ) ((fz(tr+1) fl(tr+1)) (fz(tr) fl(tr)))>_ ur(uﬁ)rl

~ {0 ( (6 = A6+ 1o lra) = ultra) = 26 = f6) + fi Cra)))

+ 1y (0 )+ ((020rs0) = 91tra) = (0200 = 016))) ) = s (), |

+ ) (Gt = 01 ) + 3 (92000 = 91Er1)) = 22 (02 = 03 1)) + 01 (4
0 () + (s~ iltran) = (0200~ 010)) ) = v, |

9% 0%
~x (; (fz(t)—fl(t))> -(%£9)
t=try1 E=trea (40)

(tr+1 -t )l—y
r2-vy

xl6
= (= ) i) = €| @0)r (4120 = x1612 D)+ | d12-500) = 15 =5 (012(D)

~ (0 (91200 = 20002 ) + 2 (01260~ 12 (1)))”

(012G~ 21012 (D)

@
B =] 2= (@ (40200~ 1002 ) + 2 (41200 - 01 D)) @2

F = e (2, £)
—& | (W0 t) = 01(8)) +x:(p2(tr4) = 91(tr1)) = x1(02(8) = 91(8)) + 91 (tr11) )
3% x°
+ w( 55 o) + 55 (@t = 91(tr) = (02 (1) —mm)))— w(v@)r]
= 2 {0 ( @) = A + 1oty = b)) = (8D = AED) + filtri)
2 (G )+ (92ra) = 1)) = (028) = 1 (8)) ~ 1 ()

+ (U ( (v(xl’t‘r) - ¢1(tr)) + xl((pz(tr+1) - (Pl(tr+1)) - xl((PZ(tr) - §01(tr)) + (Pl(tr+1))
+ Ur ( ux(xl tr) + (fZ(tr+1) fl(tr+1))_ (fz(tr) - fl(tr))) - Ur(ux)r ]

3%y (t)
—x; (at"‘ (<P2(t) <P1(t))>t:t +1_< ota >t:t . (43)

The process of the solution starts by taking » = 0, 7y = 0 and the boundary conditions
given in Equation 44 as
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ulxy, ty) = ulx),0) = h(xp), uy o, tr) = uy (x,0) = hye (),
Unere O ) = Uy (67, 0) = Ry ()
v(xptr) = v(x,0) = plep),ve (o t7) = vy (33, 0) = pr (),

Uxx (xlf ty) = Uxx (xl' 0) = Drx (X1) (44)

The values of wavelet coefficients can be calculated successively for different values
ofr=0,1,2... by using the Equation 45 and 46

A1x3p = (o FD_lB) * (A — ED_lB) (45)
bixzp = (C — FET'A)* (B—DE™'A) (46)

Then by putting the values of the wavelet coefficient ;s and b;s in the Equation
49 and 50 one can obtain numerically approximated solution successively for u(x, ¢) and
v(x,t) forr=0,1,2, 3... using Equation 47 and 48

3m
ulxptrpr) = (tryr — tr )Z a;(qi2(x) —x,q;2(1)) + (u(xl'tr) _fl(tr))
i=1
+x1(fo(tra1) = fi(tre)) = (6D — AED) + filtre) (47

3m
v(xptrpr) = (bryr — tr )Z bi(qiz(cp) — x,q;2(D) + (Wxpt,) — 01 (t,))
i=1
+x; (‘Pz(trﬂ) — ¢ (tr+1)) - xl(‘Pz () — (pl(tr)) + @1(trs1) (48)

at various times by using successive iteration for r=0,1,2, 3...

Convergence Analysis

To establish the convergence of the proposed method, we considered the asymptotic
extension of Equation 47 and 48 for a fixed value of 1 = ¢,;| and x = x; as given below
(Equation 49 and 50)

co

ulx, t) = At * Z a;(qi2(x) —xq;,(1))+ A+ Bx,
i=1
Where A = u(x;, t,) +fi (tr41) — fi(t),

B = (fo(trs1) — filtr+1) — () — A1) (49)

Pertanika J. Sci. & Technol. 28 (2): 579 - 607 (2020) 589



Geeta Arora, Ratesh Kumar and Harpreet Kaur

v(x,t) = At * Z bi(qi>2(x;))—xq;>(1)) +C + Dx ,

i=1
Where € = (v(x}, t,) — @1 () + @1 (trsr)
D = (@a(trs1) = 01 (trs1)) — (02(t) — 91 (t,)) (50)

Now the convergence of the theorem will be proven with the help of the following
lemma

Lemma 1: let u(x)eLZ(R) be any square-integrable function such that

[00)

2V2M 1
lu™(x)] < M,V xe(0,1) and D%u(x) = Za hi(x). Then la;| < 3rm—a ¥ D 3](m a+1)
=1
oo 3p
Proof: Let D%u(x) = Zaihi () be the exact solution and DFuzy, (x) = Zaihi (x)
=1 i=1

be the approximated solution

Now the error at the /™ level of resolution can be represented by Equation 51 and the
value of g; is given by Equation 52

Au(x) = DEuzyO||” = 5251 a0 =

(Z?o=3p+1 a;gh;(x) '2?O=3p+1aihi(x) )

Sl %] %) oo oo 1

[ Y Y sanem@a= Y > aa] hn ax
—ooooi =3p+1k =3p+o% i =3p+1k=3p+1 0

= Z aa; = Z |a;|?
i=3p+1 i=3p+1 (51)

it i/t 1
a; =32 f h;(x) D¥u(x)dx = 32 < f ¥; 1 (x) Dfu(x)dx + f V% (x) Df‘u(x)dx>
0
) i) i)
! (f;z((ll) \/}D“u(x)dx+fa3((l) \/_D“u(x)dx+fa“((l) ;D“u(x)dx)
) ) -
(f;lz((ll) fD“ (x)dx +fa4((ll) _ D“u(x)dx)
(52)
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By applying the mean value theorem (Sahoo & Riedel, 1998) of integralon on Equation

52 , WE get &1 € (al(i), a, (l)) , €2 € (az(i),a3(i)),53 € (0(3(1'), 0!4,(1)) (Equation 53)
such that

S, 2(%) Dru(x)dx = (a, (D) — ay () Dule;) = i Deu(e;)

az(i)

F89 pay(dx = (a5 (i) — az (1)) D%ule,) = 5 Dfuler)

[ DEUGOdx = (@4 (i) — a3 (D)Dules) = 5 DruCes) (53)

Now using Equation 53 ,Equation 52 becomes Equation 54

V3—
V2

3—1 1
<\/_\/§ > D%u(e;) + \/ZDf‘u(sz) - < ) D%u(eg)
1

32
a; = 5
3p

((\/—f/i )D“u(sl)+\/_D“u(ez) (\/_ )D“u(53)>

_3E 2((‘(/_1) D%u(e;) + V2D %ule,) — ( 7 °) D (83)> (54)

Now by using the Caputo definition of fractional derivatives (Das, 2011) on Equation
54, we get Equation 55,

oo () e )+ 3

al.:3 2 ‘/E F(m—a) 0 (gl—z)a—m+1

u™(2)
I(m-a) fo (g5— z)“—m+1dz)

B (\/_f/; 1) (F(rrj—a) f083 (33—:; ‘("Z—)m+1 dZ)

2 [ (VB-1)ff :;’“Z_) dz—2[0 29 g,

)a m+1 2(82 Z)“ m+1

T VZr(m-a) —(\/§— 1)( 01(8 u™(2) dz +f u™(2) dZ)
3

_Z)a—m+1 €1 (83—2)“ m+1

22 (((B-)( 5 Eme - em )

3 £,—z)a-m+1 (s —z)a-m+1

T 2 (m-a) —(v3- )( u™(2) ) 2 [0 W@
&

&1 (53 Z)a—m+1 2(82 Z)oc—m+1 z (55)

Taking modulus on both side of Equation 55 and appling the properties of modulus,
we get Equation 56, 57, 58, 59, 60, 61 and 62
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o _um@) U@
3172 <f (e, —2)% A a-meid f (63 —2)* (oo _ ya—m+1 )

Vimm—a)_4J§_ﬂ( B um(2) ‘ﬁ>_2f u™(z) iz

e (83 _ Z) a-m+1 ) (82 _ Z)a m+1

(56)

J‘gl u™(z) f u™(z)
Z)a m+1 (53_2)(1 (o _ Na-m+1 Z

3 u™(2) u™(z)
f1 (63 )a m+1d ‘+2 Ez(sz_z)a m+1

(57)

ai|=

[

VT -a)|y (51)

dz‘

€1

2 (3-1)[

32 0

s
V=04 (5-1) |

€1

1 1
lu™(2)] — - —|dz
(81 _ Z)“ m+1 (83 _ Z)“ m+1
() ————dz+2 f 4
(83 _ Z)a—m+1 A (82 _ Z)a—m+1

2

&3

(58)
- € 1 1
la;| < ST M (\/g_l)f [(81—2)“_"‘“_(63—Z)a—m+1]dz
“ _\/_F(m ; 0;
+(\/_ 1) e Z)a_m+1dz+2 5 (ez—z)“-mﬂdz
(59)
—j-2
PP R CERE] Sl S PV
U= 2 Tm—a) | n—a) l+e,™ @ + (g5 — e)m-a] ~ =2 .

m—a> 0,6 <e226MI<<egM M P —eM20,6,>0 2 —26,%<0

= elm_“ - €3m—a - 2€2m_a <0

—j-2 —j—2
372 M |[(V3- 4.3z M
la;| < ( ) [2(e3— &)™ 9] <
V2T(m—a) | (m—a) V2T(m—a+1)
_]'_2
_ 2237z M 1
T (m-a+1) * 3im-a (61)
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22 M 1

la;| < X
! Arm—a+1) 3j(m—a+%)

(62)

Theorem 1: - If u(x, t) represent the exact solution and u 3,, (x, ¢) represents the Scale 3
Haar wavelet-based approximated solution, then for a fixed value of ¢ = ¢;

. 1
~ WIM K |at] [ 377m=a+3)
||Ej|| = |[ulx,t) —uzm (O < Tm—a+ 1) L 3_(m_a_%)

Proof. At jﬂ’ level of resolution, error estimation for the solution is given by
”EJ'” = llulx,t) —uzm ()1l = |At* ieam+1@i(qi2(x) — xq;2 (1))|

“Egollz = |At]|? * |Z<ii3m+1a’i({'h,2(x) - XCIi,Z(l))|2 =
|2 ame1 @i(qi200) = x @12 (1) + T g1 A (@2 () = x qr2 (D))

(o] [o0) 1
< |At]* = Zi=3m+12k=3m+1f0 a;ag (CIi,z (x) — XQi,z(l)) (Clk,z (%) — xqy 2 (1)) dx |

< |At1? * |azay M|
1
Where My = Sup J; (41200 = x412(D) (412 () = xt12 (D)) dx
L,

a;(azmMizm + Azme1Mizme1 + Azme2Mizme2
+azmiz Mizmez + )

IE I < 18612 5 £

< |At|? * ?o=3m+1|aiMi (@zm + Azmi1 + Azmaz + Azmyz, + - )

Where M; = Sup M;;
ik

Using Lemma 1 in the equation we get

2 4VZK |At|23—j(m—‘1+§) .
”Ej” Sr(m_aﬂ) 1_g-(m-a-3) i=3m+11@i M|

Take M = Sup M;
4

. 1 . 1
AT KA M3 ~Im=a+3) Tk 3lman)

) 1
WT KlAt2 M3TIma+3) .
= T T

r(m-a+1) 1_3—(m—a—5) r(m-a+1) 1_3—(m—a—5)

‘T(m-a+1) 1_3—(m—a—%)

2
21" <

Yizsmelail
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. 1
AW K |ae [ 377mmer3)
(m—a+1) 1— 3—(m—a—%)

151 =
(63)

It is clear from the Equation 63 that error bound is inversely proportional to the level
of resolution which means that with the increase in the level of resolution, error bound
decreases i.e. j = 00 = || E ]” —> 0. This proves the convergence of solution u (x, t). In
a similar way, the convergence of v(x,¢) solution can be proved. It ensures the stability
of the solutions.

RESULTS AND DISCUSSIONS FROM NUMERICAL EXPERIMENT

To describe the appropriateness of the present scheme for fractional coupled Burgers’
equation, solutions of two problems obtained by the present scheme had been analyzed
and absolute errors were calculated to check the efficiency of the present scheme with the
help of following formulas

Absolute error = |Uexact(t1) = Unum (811
where #; represents the collocation points of the domain.

Numerical Experiment No. 1: - Consider the following space-time fractional coupled
Burgers’ Equation 64

Fu_Pu ) Pu_ow
9t~ ax2 T “YoxF T ox
v 9%v v a(uv)

a7 " ox2  “Vaxd  ox

, xe[0,1] ,te[O,T]

, x€[0,1] ,tE[O,T]
(64)

Subjected to the boundary conditions given in Equation 65

u(0,t) =0,u(1,t) =e7tsinl , v(0,t) =0,v(1,t) =etsinl V te[0,T] (65)
and with the initial condition given in Equation 66

u(x,0) =sinx v(x,0) = sinx v xel0,1] (66)

The exact solution of the Equation 64 subjected to the conditions given in Equation
65and66fora =B=y=56=11s
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ulx,t) =e tsinx , v(x,t) = e tsinx

The numerical solution obtained by applying the given methodology for Equation 64
subjected to the conditions given in Equation 65 and 66 is

3m
ulxy, typr) = (b1 — tr )Z a;(qiz(x) —x,q;2(1) + (u(xl;tr) - fl(tr))
i=1

+xl(fz (tr+1) - fl(tr+1)) - xl(fz (tr) - fl(tr)) + fl(tr+1)

3m
17(xllt7'+1) = (tr+1 - tr )Z bi(qi,z (xl) - xlqi,Z (1)) + (v(xlftr) — ¢ (tr))
i=1

+X; (4’2 (try1) — @1 (tr+1)) - xl(‘/’z ) — o1 (tr)) + @1 (tr41)

at the various times by using successive iteration for » = 0,1,2,3,.... The process
of finding the solution in the discrete form starts by taking r = 0,t, =0 and
filty) =0, f,(t;) =e"trsinl, @,(t,) =0,¢,(t,41) =e trsinl for r=0,t, =0
and rest all the values will be obtained using the iterative process.

Results obtained for example 1 are also reported by the way of figures and tables. It
can be seen from Figure 1 and Figure 2 that the solution obtained by the proposed method
for the case (whena = § =y = § = 1) is in good agreement with the analytical solution
available in the literature. Table 1 and Figure 3 show the absolute errors in the results
obtained at the different collocation points for the case@« = f =y =8 =1 and it is of
order 10> which assures the efficiency and reliability of the proposed method. In Table
2, results obtained by the present method are compared with another method (Ray, 2013)
available in the literature and it is found that the present method outperforms over another
method available in the literature. Table 3 explains the absolute error in the solution for
different values of At which illustrate the direct dependence of absolute error on meshsize
for time variable. For better visibility contour plots and 2D-solution plots are also given
in Figure 4 and Figure 5. Most important fact has been explained by the Figure 6 and
Figure 7 that when we shift from one classical order derivative (integer-order 0) to another
classical order derivative (integer-order 1) in the coupled Burgers’ equation the behavior
of the solution does not remain the same, in fact many variations have been observed in
the solution space with the variation in the order of time derivative or space derivative
which gives the better insight of microscopic behavior of poly-dispersive sedimentation

phenomena of two different types of particle concentration in the fluid.
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Table 3

Maximum absolute error in numerical results u(x,t) and v(x,t) at the integer order o= = y= 0 =1 with n=
& =-2, u=1=1 for different values of At

At IE@)lo, lE@)l
0.0100 1.22142096728672410* 1.22142096728672410*
0.0010 2.218389533070741x10°¢ 2.218389533070741x10°¢
0.0001 2.4131162179585891078 2.41311621795858910*
Yxact (6t for =1, p=1 =1, §=1 "'Appmximated (xt)for =1, g=1, 4=1, §=1

1 u(x,t)=8.297803438386536e-01 1 u(x,t)=8.297804122772982e-01

u(x.t)

u(x.t)

Figure 1. 3D Graphical representation of exact and approximated solution u(x,t) of Experiment No. 1 for
integer order o= f=y= 30 =1 withn=§=-2, p=A=1 and At=0.01

v = = = = v = = = =
exact (0f) for =1, g=1, 4=1, 5=1 Approximated o) for =1, g=1, =1, §=1

1 Vv(x,t)=8.297803438386536e-01 V(x,1)=8.297804122772984e-01

Figure 2. 3D Graphical representation of exact and approximated solution v(x,t) of Experiment No. 1 at
integer order o= = y= 0 =1 with n= & =-2, p=A=1 and At = 0.01

Absolute error in u(x,t) at j=2 for o=1 .B=1' ’7=1’ 51 Absolute error in v(x,t) at j=2 for o~ ﬂ=1‘ ’Y=1‘ 5=1

|
x
:

(x0)

Vet D=V pumerica
o

Figure 3. Surface plot of absolute error in the solutions u(x,t) and v(x,t) of Experiment No. 1 for j=3 at the
integer order o= = y= 6 =1 with n= & = -2, u=A=1 and At = 0.01
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For j=3 and p=81 For j=3 and p=81
08 [ T T T T T ~ ~ 08
0.7
0.7
06 06
05 05
;’ 04 04
=}
0.3 03
0.2
0.2
0.1
0.1
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
X X

Figure 4. Contour representation of solutions u(x,t) and v(x,t) of Experiment No. 1 at the integer order o= =
v=208=1 withn=§&=-2, p=A=1 and At = 0.01

2D-Graph of Exact and Numerical solution for u(x,t) 2D-Graph of Exact and Numerical solution for v(x,t)
08 . . 08 . .

O Exact Solution at t=0.1
07 | |—s— Numerical Solution at t=0.1

—— Exact Solution at t=0.3

—+— Numerical Solution at t=0.3

O Exact Solution at t=0.1
07 | |——s— Numerical Solution at t=0.1

—— Exact Solution at t=0.3

—— Numerical Solution at t=0.3

08 b |4 ExactSolutionatatt=05 4 ExactSoluion at at t=0.5
5 Numerical Solution at t=0.5 G Numerical Solution at t=0.5
05 ||t ExactSotionatt=07 05 ||t ExactSotionatt=07
—+ Numerical Solution at t=0.7 —+ Numerical Solution at t=0.7
= o4 = o4
kS X
E >
03 03
02 02
04 041
o 0@
o o1 02 03 04 05 06 07 08 09 1 o o1 02 03 04 05 06 07 08 09 1
X X

Figure 5. 2D-Graphical representation of exact and approximated solutions u(x,t) and v(x,t) of Experiment
No. 2 for different values of t at the integer order a= f=y= 8 =1 with n=& = -2, p=A=1 and At =0.01

u - =i = i v - - = =
ppproxmatea ¥ fOT =025, =025, 4=025, §=025 poproximatea 0 1O @70.25, =025, =0.25, 5=0.25

1 u(x,)=8.289465143854958e-01 1 V(x,1)=8.289465143854642e-01

u(x,t)
v(x,t)

Figure 6. Approximate solution of Experiment No. 1 in 3D with different values of a, p € (0,1] and fixed
values of y=08=0.25 with n=§= -2, p=A=1 and At = 0.001
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u = = = = v = = = =
Approximatea D fOT =075, B=0T5, =1, §=0.75 Approximatea 08 T @=0.75, =075, =1, §=075

V(x,1)=8.300170518996982e-01

1 u(x,t)=8.296815713866572e-01 1

Figure 7. Approximate solution of Experiment No. 1 in 3D with different values of o, 3, v, 6 € (0,1] for which
the solution behaves differently at n= & = -2, u=A=1 and At =0.01.

Numerical Experiment No. 2: - Consider the following space-time fractional coupled

Burgers’ Equation 67

0“u 62u+ Pu  (uv) 0.1 e[0T

e o VAT oy o Xel0 1l el

v  d%v N v a(uv) 0.1] .te[oT

—_— = — U— f—

ot —ox? " “Vox® ox v TR RElD 67)
Subjected to the boundary conditions given in Equation 68
u(0,t) =0,u(1,t) =0,v(0,t) =0,v(1,t) =0 vV te[0,T] (68)

and with the initial condition given in Equation 69

u(x,0) =sinQRrx—m) , v(x,0) = sinQex —m) v xe[0,1] (69)

Analytic solution of Equation 67 when @« ==y =6 =1 is given by Equation
70 as

u(x,t) = e 4tsinRux — 1) v(x,t) = e~ ¥t sinQrx — ) (70)
The numerical solution obtained by applying the given methodology is
3m
Wty tren) = (o = t) ) (@120 = 210 (0) + (wepty) = fi(6)
i=1

+xl(fZ (tr+1) - fl (tr+1)) - xl(fZ (tr) - fl(tr)) + fl(tr+1)
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V(1) = (Ern = 6 ) bi@i2(r) = x112(D) + (v0e8) = 01 21)
i=1

+X; (‘Pz (tr41) — @4 (tr+1)) - xl(‘Pz t:)— oy (tr)) + @1 (trs1)

at various times by using successive iteration for » = 0,1,2,3,... where
fity) =0, £,(t,) =0, 91(t,) =0, p,(t,) =0 for r = 0,t, = 0 and rest all the values
will be obtained using the iterative process.

Table 4 explains the absolute errors in the results obtained by the proposed method
for example 2 by considering the domain x € [0,1] and At = 0 and it is of order 107
which assures the efficiency and reliability of the proposed method. It can be seen from
Figure 8 to Figure 14 that the solution obtained by the proposed method for the case
(whenag = B =y = § = 1is in good agreement with the analytical solution available in

u = - =1 5= u = - =1 5=
exact (%t for =1, B 1, 0% 1, §=1 Approximated (xt) for =1, B 1, 0 1, §=1

7ARANNNN NN VAV ININN NSNS

lll\\\\\\\\\\\\““ Ill\\\\\\\\\\\\\\\‘
””“e“‘“‘“ llll\e\\\\\\\\

Figure 8. 3D Graphical representation of exact and approximated solution u(x,t) of Experiment No. 2 at
integer order o= = y= 0 =1 with n= & =-2, p=A=1 and At = 0.001

v = = = = v = = =
exact Xtfor =1, B=1, 4=1, §=1 Approximated (xt) for =1, g=1, 4=1, §=1

P
LN

l’l"li‘\k\‘\\\\\\\

Figure 9. 3D Graphical representation of exact and approximated solution v(x,t) of Experiment No. 2 at
integer order o= = y= 9§ =1 withn= & =-2, n=A=1 and At = 0.001
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the literature. Table 5 explains the absolute error in the solution for different values of At
which illustrate the direct dependence of absolute error on meshsize for time variable.
It can also be observed from the Figure 13 and Figure 14 that whenever we are changing
the values of y and ¢ by fixing the values of a, 5, we are getting the change in the solution

Table 5

Maximum absolute error in numerical results u(x,t) and v(x,t) at the integer order a= = y=0 =1 with n=

¢ =-2, u=A=1 for different values of At
At lE@llo, lE@) Il
0.0100 2.09861158048527x10* 2.098611580485271x10*
0.0010 3.764653977598853x10°¢ 3.764653977598853x10°
0.0001 6.090606685656975%10°8 6.090606685656975x10°®

For j=3 and p=81

0.025 L

u(x,t)

0.005 [

R e

0015 —

v(x,t)

0.025 L

0015 —

-06 0005 [

For j=3 and p=81

T

T T
— 08

Figure 11. Contour representation of solutions u(x,t) and v(x,t) of Experiment No. 2 at the integer order o= =
y=308=1 withn=&= -2, p=A=1 and At =0.001
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2D-Graph of Exact and Numerical solution for u(x,t)
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Figure 12. 2D-Graphical representation of exact and approximated solutions u(x,t) and v(x,t) of Experiment
No. 2 for different values of t at the integer order a= == =1 with n=& = -2, p=A=1 and At = 0.001
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space of v(x, ) and there is no change in the solution space of u(x,?) and vice versa. It
is because of the reason that o, § are orders of the time and space fractional derivatives
of u(x,t) respectively and that y, J are orders of the time and space fractional derivatives
of u(x,t) respectively which explains the importance of fractional models in explaining
the microscopic behavior of the phenomenon .

u =| =| =| =| v =| =| =| =|
ppproximatea 00T a=0.25, =025, 4=0.25, §=025 ppproximatea 090 0T =025, =025, =025, 5=0.25

SO
e

0.03

Figure 13. Approximate solution of Experiment No. 2 in 3D with different values of y, & € (0,1] and fixed
values of o=p= 0.25 with n=¢&= -2, p=A=1 and At = 0.001

v = = = = u = = = =
Approximatea 00 T @=0.5, =05, =05, §=0.5 Approximatea XD T =05, §=0.5, 4=0.5, 5=0.5

t o o X

v = = = = u = = = =
Approximated (xt) for =0.75, ﬂ-O.S, % 0.5, $=0.5 Approximated (x,t) for  =0.75, ¥éi 0.5, 0% 0.5, §=0.5

v(x,t)

Figure 14. Approximate solution of Experiment No. 2 in 3D with different values of a, § € (0,1] and fixed
values of y=06=0.5 with n= &= -2, p=A=1 and At =0.001
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CONCLUSION

We have developed a scale 3 Haar wavelet-based collocation scheme to find the solution of
nonlinear coupled fractional differential equations. Two examples of space-time fractional
coupled Burgers’ equation with different boundary and initial constraints were considered to
prove the reliability and efficiency of the proposed numerical scheme. It had been observed
in with the help of MATLAB stimulation and computations that solution was behaving
differentially as we varied the order of fractional derivatives in space-time fractional coupled
Burgers’ equation and giving the accuracy of order 107 at integer-order derivative (i.e.
ata = ff =y =36 = 1) for j=2 which demonstrated the performance of the scheme.The
proposed method was compared with another method available in the literature and it was
found that the proposed method was working better than the other method. Looking at
the performance of the method for the given set of numerical experiments, the proposed
method can be extended to explain the behavior of the different phenomenon by solving
the system of fractional differential equations governing those phenomena. The proposed
method provides an insight into the microscopic behavior of phenomena under study. The
given method is also fully supportive and compatible with the ordinary, partial, fractional
differential equations and integral equations.
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